The class of binary matroids with no M(K3,3)-, M*(K3,3)-, M(K5)- or M*(K5)-minor

被引:8
|
作者
Qin, HX [1 ]
Zhou, XQ [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
binary matroids; minors; fundamental graphs; blocking sequences; size function;
D O I
10.1016/S0095-8956(03)00083-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an internally 4-connected binary matroid with no minor isomorphic to M(K-3,(3)),M*(K-3,(3)),M(K-5), or M*(K-5) is either planar or isomorphic to F-7 or F-7*. As a corollary, we prove an extremal result for the class of binary matroids without these minors. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [41] K5公寓
    Reiulf D.Ramstad
    Espen Surnevik
    Sunniva Neuenkirchen Rosenberg
    Anders TjФnneland
    中国建筑装饰装修, 2011, (02) : 34 - 41
  • [42] Semisymmetric cubic graphs as regular covers of K3,3
    Chang Qun Wang
    Tie Sheng Chen
    Acta Mathematica Sinica, English Series, 2008, 24 : 405 - 416
  • [43] Revising the fellows-kaschube K3,3 search
    Boyer J.M.
    Boyer, John M. (jboyer@acm.org), 1600, Brown University (25): : 513 - 520
  • [44] Semisymmetric cubic graphs as regular covers of K3,3
    Wang, Chang Qun
    Chen, Tie Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) : 405 - 416
  • [45] Semisymmetric Cubic Graphs as Regular Covers of K3,3
    Chang Qun WANG Tie Sheng CHEN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2008, 24 (03) : 405 - 416
  • [46] K5(7,3)≤100
    Gommard, G
    Plagne, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 104 (02) : 365 - 370
  • [47] Exponential speedup of fixed-parameter algorithms on K3,3-minor-free or K5-minor-free graphs
    Demaine, ED
    Hajiaghayi, MT
    Thilikos, DA
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 262 - 273
  • [48] Subdivisions of K5 in graphs containing K2,3
    Kawarabayashia, Ken-ichi
    Ma, Jie
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 113 : 18 - 67
  • [49] Twisted tensor products of K3 with K3
    Arce, Jack
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3614 - 3634
  • [50] The s-bipartite Ramsey numbers involving K2,3 and K3,3
    Wan, Chang
    Li, Shitao
    Deng, Fei
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 275 - 285