The class of binary matroids with no M(K3,3)-, M*(K3,3)-, M(K5)- or M*(K5)-minor

被引:8
|
作者
Qin, HX [1 ]
Zhou, XQ [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
binary matroids; minors; fundamental graphs; blocking sequences; size function;
D O I
10.1016/S0095-8956(03)00083-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an internally 4-connected binary matroid with no minor isomorphic to M(K-3,(3)),M*(K-3,(3)),M(K-5), or M*(K-5) is either planar or isomorphic to F-7 or F-7*. As a corollary, we prove an extremal result for the class of binary matroids without these minors. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] The Ramsey Numbers r(K5 - 2K2,2K3), r(K5 - E, 2X3), and r(K5,2K3)
    Krone, Martin
    Mengersen, Ingrid
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 257 - 260
  • [22] Effects of Vitamin K3 and K5 on Daunorubicin-resistant Human T Lymphoblastoid Leukemia Cells
    Nakaoka, Eri
    Tanaka, Sachiko
    Onda, Kenji
    Sugiyama, Kentaro
    Hirano, Toshihiko
    ANTICANCER RESEARCH, 2015, 35 (11) : 6041 - 6048
  • [23] The group Gal(k3(2) | k) for k = Q(√-3,√d) of type (3,3)
    Azizi, Abdelmalek
    Talbi, Mohamed
    Talbi, Mohammed
    Derhem, Aissa
    Mayer, Daniel C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (07) : 1951 - 1986
  • [24] K3 surfaces with action of the group M20$M_{20}$
    Comparin, Paola
    Demelle, Romain
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2456 - 2480
  • [25] Wrapping the M theory five-brane on K3
    Cherkis, S
    Schwarz, JH
    PHYSICS LETTERS B, 1997, 403 (3-4) : 225 - 232
  • [26] 拟阵族N的分裂子M(K5)
    吕国亮
    赵小鹏
    科学技术与工程, 2010, 10 (02) : 348 - 350+371
  • [27] Odd K3,3 subdivisions in bipartite graphs
    Thomas, Robin
    Whalen, Peter
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 118 : 76 - 87
  • [28] Extremal spectral radius of K3,3/K2,4-minor free graphs
    Wang, Bing
    Chen, Wenwen
    Fang, Longfei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 628 : 103 - 114
  • [29] The obstructions for toroidal graphs with no K3,3's
    Gagarin, Andrei
    Myrvold, Wendy
    Chambers, John
    DISCRETE MATHEMATICS, 2009, 309 (11) : 3625 - 3631
  • [30] Nature of the K2*(1430), K3*(1780), K4*(2045), K5*(2380), and K6* as K*-multi-ρ states
    Yamagata-Sekihara, J.
    Roca, L.
    Oset, E.
    PHYSICAL REVIEW D, 2010, 82 (09):