The class of binary matroids with no M(K3,3)-, M*(K3,3)-, M(K5)- or M*(K5)-minor

被引:8
|
作者
Qin, HX [1 ]
Zhou, XQ [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
binary matroids; minors; fundamental graphs; blocking sequences; size function;
D O I
10.1016/S0095-8956(03)00083-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an internally 4-connected binary matroid with no minor isomorphic to M(K-3,(3)),M*(K-3,(3)),M(K-5), or M*(K-5) is either planar or isomorphic to F-7 or F-7*. As a corollary, we prove an extremal result for the class of binary matroids without these minors. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [1] Embedding K3,3 and K5 on the double torus
    Gagarin, Andrei
    Kocay, William L.
    DISCRETE APPLIED MATHEMATICS, 2024, 354 : 29 - 47
  • [2] A note on binary matroid with no M(K3,3)-minor
    Zhou, Xiangqian
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (01) : 235 - 238
  • [3] The Internally 4-Connected Binary Matroids with No M(K3,3)-Minor
    Mayhew, Dillon
    Royle, Gordon
    Whittle, Geoff
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 208 (981) : 1 - +
  • [4] Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2
    Chen, Jing
    Jiang, Zheng
    Wang, Beibei
    Wang, Yanguang
    Hu, Xun
    CANCER LETTERS, 2012, 316 (02) : 204 - 210
  • [5] The non-planarity of K5 and K3,3 as axioms for plane ordered geometry
    Victor Pambuccian
    Journal of Geometry, 2012, 103 (2) : 313 - 318
  • [6] THE INTERNALLY 4-CONNECTED BINARY MATROIDS WITH NO M(K5\e)-MINOR
    Mayhew, Dillon
    Royle, Gordon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 755 - 767
  • [7] Derandomizing Isolation Lemma for K3,3-free and K5 -free Bipartite Graphs
    Arora, Rahul
    Gupta, Ashu
    Gurjar, Rohit
    Tewari, Raghunath
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [8] Spanning cycles in regular matroids without M* (K5) minors
    Lai, Hong-Jian
    Liu, Bolian
    Liu, Yan
    Shao, Yehong
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 298 - 310
  • [9] Fixing all moduli for M-theory on K3 x K3
    Aspinwall, PS
    Kallosh, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (10):
  • [10] The number of graphs not containing K3,3 as a minor
    Gerke, Stefanie
    Gimenez, Omer
    Noy, Marc
    Weissl, Andreas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):