CACP: Classification Algorithms Comparison Pipeline

被引:3
|
作者
Czmil, Sylwester [1 ]
Kluska, Jacek [1 ]
Czmil, Anna [1 ]
机构
[1] Rzeszow Univ Technol, Fac Elect & Comp Engn, Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
Supervised classification; Computational reproducibility; Classifier performance evaluation; Wilcoxon signed-rank test; CLASSIFIERS;
D O I
10.1016/j.softx.2022.101134
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a Classification Algorithms Comparison Pipeline (CACP) for comparing newly developed classification algorithms in Python with other commonly used classifiers to evaluate classification performance, reproducibility, and statistical reliability. CACP simplifies the entire classifier evaluation process. Code examples and output results are explained and detailed to provide the basics of the module and give an overview of its capabilities. The code is available on GitHub under the MIT license. ?? 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Comparison of YOLO Algorithms for Vehicle Accident Detection and Classification
    Nusari, Ahmed N.
    Alawi, Abdulfattah E. Ba
    Bozkurt, Ferhat
    Ozbek, Ibrahim Yucel
    2024 4TH INTERNATIONAL CONFERENCE ON EMERGING SMART TECHNOLOGIES AND APPLICATIONS, ESMARTA 2024, 2024, : 493 - 500
  • [42] Unsupervised algorithms for the automatic classification of EWS maps: a comparison
    Di Palma, F
    De Nicolao, G
    Donzelli, OM
    Miraglia, G
    ISSM 2005: IEEE INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING, CONFERENCE PROCEEDINGS, 2005, : 253 - 256
  • [43] Comparison of Artificial Intelligence Algorithms for ELINT Signals Classification
    Perdoch, Jozef
    Gazovova, Stanislava
    Matousek, Zdenek
    Ochodnicky, Jan
    PROCEEDINGS OF THE 2020 CONFERENCE ON NEW TRENDS IN SIGNAL PROCESSING (NTSP), 2020, : 93 - 100
  • [44] A COMPARISON OF ALGORITHMS FOR SUPERVISED CLASSIFICATION USING HYPERSPECTRAL DATA
    Kuznetsov, A. V.
    Myasnikov, V. V.
    COMPUTER OPTICS, 2014, 38 (03) : 494 - 502
  • [45] Comparison of SWAN and WISE menopausal status classification algorithms
    Johnston, Janet M.
    Colvin, Alicia
    Johnson, B. Delia
    Santoro, Nanette
    Harlow, Sioban D.
    Noel Bairey Merz, C.
    Sutton-Tyrrell, Kim
    JOURNAL OF WOMENS HEALTH, 2006, 15 (10) : 1184 - 1194
  • [46] Comparison of Machine Learning Algorithms for Shelter Animal Classification
    Mitrovic, Katarina
    Milosevic, Danijela
    Greconici, Marian
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2019), 2019, : 211 - 216
  • [47] A Statistical Comparison of Classification Algorithms on a Single Data Set
    Sibona, Christopher
    Brickey, Jonalan
    AMCIS 2012 PROCEEDINGS, 2012,
  • [48] A comparison of generic machine learning algorithms for image classification
    Marée, R
    Geurts, P
    Visimberga, G
    Piater, J
    Wehenkel, L
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XX, 2004, : 169 - 182
  • [49] A comparison on texture classification algorithms for remote sensing data
    Xu, P
    Dai, M
    Chan, AK
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1057 - 1060
  • [50] Comparison of different classification algorithms for underwater target discrimination
    Li, DH
    Azimi-Sadjadi, MR
    Robinson, M
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (01): : 189 - 194