A COMPARISON OF ALGORITHMS FOR SUPERVISED CLASSIFICATION USING HYPERSPECTRAL DATA

被引:17
|
作者
Kuznetsov, A. V. [1 ]
Myasnikov, V. V. [1 ]
机构
[1] Russian Acad Sci, Samara State Aerosp Univ, Image Proc Syst Inst, Moscow, Russia
关键词
hyperspectral image; decision tree; C5.0; Bayes; MSE; conjugation classification; spectral angle mapper classification; SVM;
D O I
10.18287/0134-2452-2014-38-3-494-502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The present work is concerned with the problem of selecting the best hyperspectral image (HSI) classification algorithm. There are compared the following algorithms in our paper: decision tree using cross-validation function, decision tree C4.5 (C5.0), Bayesian classifier, maximum likelihood classifier, minimizing MSE classifier, including a special case - classification on conjugation, spectral angle mapper classifier(for mean vector and nearest neighbor) and support vector machine (SVM). There are presented experimental results of these algorithms for hyperspectral images received by AVIRIS satellite and during SpecTIR project.
引用
收藏
页码:494 / 502
页数:9
相关论文
共 50 条
  • [1] Evaluation of supervised classification algorithms for identifying crops using airborne hyperspectral data
    Oki, Kazuo
    Shan, Lu
    Saruwatari, Takuya
    Suhama, Tomoyuki
    Omasa, Kenji
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (9-10) : 1993 - 2002
  • [2] Supervised classification of monomodal and multimodal hyperspectral data in vibrational microspectroscopy: A comprehensive comparison
    Pomrehn, Ch
    Klein, D.
    Kolb, A.
    Kaul, P.
    Herpers, R.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 184 : 112 - 122
  • [3] Comparison of neural and statistical algorithms for supervised classification of multi-dimensional data
    Li, TS
    Chen, CY
    Su, CT
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2003, 10 (01): : 73 - 81
  • [4] The Effect of Training Data on Hyperspectral Classification Algorithms
    Ozdemir, Okan Bilge
    Cetin, Yasemin Yardimci
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [5] Comparison of the performance of classification algorithms using cytotoxicity data
    Yoon, Yeochang
    Jeung, Eui Bae
    Jo, Na Rae
    Ju, Su In
    Lee, Sung Duck
    KOREAN JOURNAL OF APPLIED STATISTICS, 2018, 31 (03) : 417 - 426
  • [6] Kernel Supervised Ensemble Classifier for the Classification of Hyperspectral Data Using Few Labeled Samples
    Chen, Jike
    Xia, Junshi
    Du, Peijun
    Chanussot, Jocelyn
    Xue, Zhaohui
    Xie, Xiangjian
    REMOTE SENSING, 2016, 8 (07):
  • [7] MANIFOLD LEARNING BASED SUPERVISED HYPERSPECTRAL DATA CLASSIFICATION METHOD USING CLASS ENCODING
    Zhang, Miao
    Guo, Wei
    Cui, Yiming
    Shen, Fei
    Shen, Yi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3160 - 3163
  • [8] Semi-Supervised Classification of Urban Hyperspectral Data Using Spectral Unmixing Concepts
    Dopido, Inmaculada
    Li, Jun
    Plaza, Antonio
    Gamba, Paolo
    2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 186 - 189
  • [9] Classification of forensic hyperspectral paper data using hybrid spectral similarity algorithms
    Deepthi
    Devassy, Binu Melit
    George, Sony
    Nussbaum, Peter
    Thomas, Tessamma
    JOURNAL OF CHEMOMETRICS, 2022, 36 (01)
  • [10] Classification of hyperspectral data using best-bases feature extraction algorithms
    Kumar, S
    Ghosh, J
    Crawford, MM
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 362 - 373