A COMPARISON OF ALGORITHMS FOR SUPERVISED CLASSIFICATION USING HYPERSPECTRAL DATA

被引:17
|
作者
Kuznetsov, A. V. [1 ]
Myasnikov, V. V. [1 ]
机构
[1] Russian Acad Sci, Samara State Aerosp Univ, Image Proc Syst Inst, Moscow, Russia
关键词
hyperspectral image; decision tree; C5.0; Bayes; MSE; conjugation classification; spectral angle mapper classification; SVM;
D O I
10.18287/0134-2452-2014-38-3-494-502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The present work is concerned with the problem of selecting the best hyperspectral image (HSI) classification algorithm. There are compared the following algorithms in our paper: decision tree using cross-validation function, decision tree C4.5 (C5.0), Bayesian classifier, maximum likelihood classifier, minimizing MSE classifier, including a special case - classification on conjugation, spectral angle mapper classifier(for mean vector and nearest neighbor) and support vector machine (SVM). There are presented experimental results of these algorithms for hyperspectral images received by AVIRIS satellite and during SpecTIR project.
引用
收藏
页码:494 / 502
页数:9
相关论文
共 50 条
  • [41] Human Gait Patterns Classification based on MEMS Data using Unsupervised and Supervised Learning Algorithms
    Nguyen, My N.
    Zao, John Kar-Kin
    Thanh Hai Nguyen
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 405 - 409
  • [42] Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data
    Riese, Felix M.
    Keller, Sina
    Hinz, Stefan
    REMOTE SENSING, 2020, 12 (01)
  • [43] A Comparison of Three Different Group Intelligence Algorithms for Hyperspectral Imagery Classification
    Wang, Yong
    Zeng, Weibo
    PROCESSES, 2022, 10 (09)
  • [44] A classification approach and comparison to other object identification algorithms for hyperspectral imagery
    Mayer, R.
    Antoniades, J.
    Baumback, M.
    Chester, D.
    Edwards, J.
    Goldstein, A.
    Haas, D.
    Henderson, S.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [45] Hyperspectral Image Classification with Imbalanced Data Based on Semi-Supervised Learning
    Zheng, Xiaorou
    Jia, Jianxin
    Chen, Jinsong
    Guo, Shanxin
    Sun, Luyi
    Zhou, Chan
    Wang, Yawei
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [46] Supervised Hyperspectral Image Classification using SVM and Linear Discriminant Analysis
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 403 - 409
  • [47] DEEP SUPERVISED LEARNING FOR HYPERSPECTRAL DATA CLASSIFICATION THROUGH CONVOLUTIONAL NEURAL NETWORKS
    Makantasis, Konstantinos
    Karantzalos, Konstantinos
    Doulamis, Anastasios
    Doulamis, Nikolaos
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4959 - 4962
  • [48] CLASSIFICATION OF ROOF MATERIALS USING HYPERSPECTRAL DATA
    Chisense, C.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 103 - 107
  • [49] HYPERSPECTRAL DATA CLASSIFICATION USING FACTOR GRAPHS
    Makarau, Aliaksei
    Mueller, Rupert
    Palubinskas, Gintautas
    Reinartz, Peter
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 137 - 140
  • [50] Classification of Hyperspectral Data using Grey Model
    Touil, Mohamed
    Boudebza, Imad Eddine
    Daamouche, Abdelhamid
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 182 - U862