Benchmarking near-term quantum devices with the variational quantum eigensolver and the Lipkin-Meshkov-Glick model

被引:8
|
作者
Robbins, Kenneth [1 ]
Love, Peter J. [1 ,2 ]
机构
[1] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA
[2] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA
关键词
Algebraic structures - Bethe ansatz - Eigensolvers - Lipkin-Meshkov-Glick model - Number of gates - Quantum circuit - Quantum device - Verification-and-validation;
D O I
10.1103/PhysRevA.104.022412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The variational quantum eigensolver is a promising algorithm for noisy intermediate scale quantum (NISQ) computation. Verification and validation of NISQ algorithms' performance on NISQ devices is an important task. We consider the exactly diagonalizable Lipkin-Meshkov-Glick (LMG) model as a candidate for benchmarking NISQ computers. We use the Bethe Ansatz to construct eigenstates of the trigonometric LMG model using quantum circuits inspired by the LMG's underlying algebraic structure. We construct circuits with depth O(N) and O(log(2)N) that can prepare any trigonometric LMG eigenstate of N particles. The number of gates required for both circuits is O(N). The energies of the eigenstates can then be measured and compared to the exactly known answers.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Unconventional quantum phase transition in the finite-size Lipkin-Meshkov-Glick model
    Chen, Gang
    Liang, J-Q
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [32] Quantum speed limit for a central system in Lipkin-Meshkov-Glick bath
    Hou, Lu
    Shao, Bin
    Zou, Jian
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (02):
  • [33] Multipartite nonlocality in the Lipkin-Meshkov-Glick model
    Bao, Jia
    Guo, Bin
    Cheng, Hong-Guang
    Zhou, Mu
    Fu, Jin
    Deng, Yi-Chen
    Sun, Zhao-Yu
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [34] Entanglement dynamics in the Lipkin-Meshkov-Glick model
    Vidal, J
    Palacios, G
    Aslangul, C
    PHYSICAL REVIEW A, 2004, 70 (06): : 062304 - 1
  • [35] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    杜龙
    张文新
    丁伽焱
    王国祥
    侯净敏
    Communications in Theoretical Physics, 2011, 56 (07) : 61 - 66
  • [36] Lipkin-Meshkov-Glick model at finite temperatures
    Storozhenko, AN
    Kosov, DS
    Vdovin, AI
    PHYSICS OF ATOMIC NUCLEI, 1999, 62 (01) : 58 - 65
  • [38] Floquet time crystal in the Lipkin-Meshkov-Glick model
    Russomanno, Angelo
    Iemini, Fernando
    Dalmonte, Marcello
    Fazio, Rosario
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [39] Time delayed control of excited state quantum phase transitions in the Lipkin-Meshkov-Glick model
    Kopylov, Wassilij
    Brandes, Tobias
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [40] Quantum critical dynamics of a qubit coupled to an isotropic Lipkin-Meshkov-Glick bath
    Quan, H. T.
    Wang, Z. D.
    Sun, C. P.
    PHYSICAL REVIEW A, 2007, 76 (01):