Benchmarking near-term quantum devices with the variational quantum eigensolver and the Lipkin-Meshkov-Glick model

被引:8
|
作者
Robbins, Kenneth [1 ]
Love, Peter J. [1 ,2 ]
机构
[1] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA
[2] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA
关键词
Algebraic structures - Bethe ansatz - Eigensolvers - Lipkin-Meshkov-Glick model - Number of gates - Quantum circuit - Quantum device - Verification-and-validation;
D O I
10.1103/PhysRevA.104.022412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The variational quantum eigensolver is a promising algorithm for noisy intermediate scale quantum (NISQ) computation. Verification and validation of NISQ algorithms' performance on NISQ devices is an important task. We consider the exactly diagonalizable Lipkin-Meshkov-Glick (LMG) model as a candidate for benchmarking NISQ computers. We use the Bethe Ansatz to construct eigenstates of the trigonometric LMG model using quantum circuits inspired by the LMG's underlying algebraic structure. We construct circuits with depth O(N) and O(log(2)N) that can prepare any trigonometric LMG eigenstate of N particles. The number of gates required for both circuits is O(N). The energies of the eigenstates can then be measured and compared to the exactly known answers.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures
    Bao, Jia
    Liu, Yan-Hong
    Guo, Bin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (49)
  • [22] Variance minimisation on a quantum computer of the Lipkin-Meshkov-Glick model with three particles
    Hobday, Isaac
    Stevenson, Paul
    Benstead, James
    15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022, 2023, 284
  • [23] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [24] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [25] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [26] On the exact solutions of the Lipkin-Meshkov-Glick model
    Debergh, N
    Stancu, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (15): : 3265 - 3276
  • [27] Quantum speed limit for a central system in Lipkin-Meshkov-Glick bath
    Lu Hou
    Bin Shao
    Jian Zou
    The European Physical Journal D, 2016, 70
  • [28] Thermodynamical limit of the Lipkin-Meshkov-Glick model
    Ribeiro, Pedro
    Vidal, Julien
    Mosseri, Remy
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [29] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    Du Long
    Zhang Wen-Xin
    Ding Jia-Yan
    Wang Guo-Xiang
    Hou Jing-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 61 - 66
  • [30] Decay of quantum Loschmidt echo and fidelity in the broken phase of the Lipkin-Meshkov-Glick model
    Wang, Qian
    Wang, Ping
    Yang, Yinbiao
    Wang, Wen-ge
    PHYSICAL REVIEW A, 2015, 91 (04):