Benchmarking near-term quantum devices with the variational quantum eigensolver and the Lipkin-Meshkov-Glick model

被引:8
|
作者
Robbins, Kenneth [1 ]
Love, Peter J. [1 ,2 ]
机构
[1] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA
[2] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA
关键词
Algebraic structures - Bethe ansatz - Eigensolvers - Lipkin-Meshkov-Glick model - Number of gates - Quantum circuit - Quantum device - Verification-and-validation;
D O I
10.1103/PhysRevA.104.022412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The variational quantum eigensolver is a promising algorithm for noisy intermediate scale quantum (NISQ) computation. Verification and validation of NISQ algorithms' performance on NISQ devices is an important task. We consider the exactly diagonalizable Lipkin-Meshkov-Glick (LMG) model as a candidate for benchmarking NISQ computers. We use the Bethe Ansatz to construct eigenstates of the trigonometric LMG model using quantum circuits inspired by the LMG's underlying algebraic structure. We construct circuits with depth O(N) and O(log(2)N) that can prepare any trigonometric LMG eigenstate of N particles. The number of gates required for both circuits is O(N). The energies of the eigenstates can then be measured and compared to the exactly known answers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model
    Caneva, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    PHYSICAL REVIEW B, 2008, 78 (10)
  • [2] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Cakmak, Selcuk
    Altintas, Ferdi
    Mustecaplioglu, Ozgur E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [3] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Selçuk Çakmak
    Ferdi Altintas
    Özgür E. Müstecaplıoğlu
    The European Physical Journal Plus, 131
  • [4] Classical and quantum phase transitions in the Lipkin-Meshkov-Glick model
    Castanos, Octavio
    Lopez-Pena, Ramon
    Hirsch, Jorge G.
    Lopez-Moreno, Enrique
    PHYSICAL REVIEW B, 2006, 74 (10)
  • [5] Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system
    Zhou, Yuan
    Ma, Sheng-Li
    Li, Bo
    Li, Xiao-Xiao
    Li, Fu-Li
    Li, Peng-Bo
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [6] Quantum simulations in effective model spaces: Hamiltonian-learning variational quantum eigensolver using digital quantum computers and application to the Lipkin-Meshkov-Glick model
    Robin, Caroline E. P.
    Savage, Martin J.
    PHYSICAL REVIEW C, 2023, 108 (02)
  • [7] Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model
    Gutierrez-Ruiz, Daniel
    Gonzalez, Diego
    Chavez-Carlos, Jorge
    Hirsch, Jorge G.
    Vergara, J. David
    PHYSICAL REVIEW B, 2021, 103 (17)
  • [8] Quantum metrology in Lipkin-Meshkov-Glick critical systems
    Salvatori, Giulio
    Mandarino, Antonio
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [9] Time scales at quantum phase transitions in the Lipkin-Meshkov-Glick model
    de Los Santos, F.
    Romera, E.
    Castanos, O.
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [10] Spin Squeezing and Quantum Fisher Information in the Lipkin-Meshkov-Glick Model
    Li, Song-Song
    Yi, Hong-Gang
    Chen, Rong-Hua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (04) : 1175 - 1181