Spirit Distillation: A Model Compression Method with Multi-domain Knowledge Transfer

被引:6
|
作者
Wu, Zhiyuan [1 ]
Jiang, Yu [1 ,2 ]
Zhao, Minghao [1 ]
Cui, Chupeng [1 ]
Yang, Zongmin [1 ]
Xue, Xinhui [1 ]
Qi, Hong [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge transfer; Knowledge distillation; Multi-domain; Model compression; Few-shot learning;
D O I
10.1007/978-3-030-82136-4_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent applications pose requirements of both cross-domain knowledge transfer and model compression to machine learning models due to insufficient training data and limited computational resources. In this paper, we propose a new knowledge distillation model, named Spirit Distillation (SD), which is a model compression method with multi-domain knowledge transfer. The compact student network mimics out a representation equivalent to the front part of the teacher network, through which the general knowledge can be transferred from the source domain (teacher) to the target domain (student). To further improve the robustness of the student, we extend SD to Enhanced Spirit Distillation (ESD) in exploiting a more comprehensive knowledge by introducing the proximity domainwhich is similar to the target domain for feature extraction. Persuasive experiments are conducted on Cityscapes semantic segmentation with the prior knowledge transferred fromCOCO2017 and KITTI. Results demonstrate that our method can boost mIOU and high-precision accuracy by 1.4% and 8.2% respectively with 78.2% segmentation variance, and can gain a precise compact network with only 41.8% FLOPs.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
  • [21] Towards multi-domain knowledge transfer in engineering analyses and simulations based on virtual prototypes
    Rusak, Zoltan
    Horvath, Imre
    Mandorli, Ferruccio
    ENGINEERING WITH COMPUTERS, 2013, 29 (03) : 247 - 250
  • [22] Vision-knowledge fusion model for multi-domain medical report generation
    Xu, Dexuan
    Zhu, Huashi
    Huang, Yu
    Jin, Zhi
    Ding, Weiping
    Li, Hang
    Ran, Menglong
    INFORMATION FUSION, 2023, 97
  • [23] HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression
    Done, Chenhe
    Li, Yaliang
    Shen, Ying
    Qui, Minghui
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3126 - 3136
  • [24] A Multi-Domain Role Activation Model
    Abreu, Vilmar
    Santin, Altair O.
    Viegas, Eduardo K.
    Stihler, Maicon
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [25] A Multi-Domain Physical Model Design Optimization Method Considering Uncertainties
    Lv, Haiyang
    Zhou, Jiangling
    Fu, Chao
    Liu, Jihong
    Xu, Wenting
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1678 - 1682
  • [26] Model Selection - Knowledge Distillation Framework for Model Compression
    Chen, Renhai
    Yuan, Shimin
    Wang, Shaobo
    Li, Zhenghan
    Xing, Meng
    Feng, Zhiyong
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [27] Patient Knowledge Distillation for BERT Model Compression
    Sun, Siqi
    Cheng, Yu
    Gan, Zhe
    Liu, Jingjing
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4323 - 4332
  • [28] Triplet Knowledge Distillation Networks for Model Compression
    Tang, Jialiang
    Jiang, Ning
    Yu, Wenxin
    Wu, Wenqin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [29] Private Model Compression via Knowledge Distillation
    Wang, Ji
    Bao, Weidong
    Sun, Lichao
    Zhu, Xiaomin
    Cao, Bokai
    Yu, Philip S.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1190 - +
  • [30] Analysis of Model Compression Using Knowledge Distillation
    Hong, Yu-Wei
    Leu, Jenq-Shiou
    Faisal, Muhamad
    Prakosa, Setya Widyawan
    IEEE ACCESS, 2022, 10 : 85095 - 85105