Model Selection - Knowledge Distillation Framework for Model Compression

被引:0
|
作者
Chen, Renhai [1 ]
Yuan, Shimin [1 ]
Wang, Shaobo [1 ]
Li, Zhenghan [1 ]
Xing, Meng [1 ]
Feng, Zhiyong [1 ]
机构
[1] Tianjin Univ, Shenzhen Res Inst, Coll Intelligence & Comp, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
model selection; model compression; knowledge distillation;
D O I
10.1109/SSCI50451.2021.9659861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The significant increase in the computation and parameter storage costs of CNNs promotes its development in various applications and restricts its deployment in edge devices as well. Therefore, many neural network pruning methods has been proposed for neural network compression and acceleration. However, there are two major limitations to these methods: First, prevailing methods usually design single pruning criteria for the primitive network and fail to consider the diversity of potential optimal sub-network structure. Second, these methods utilize traditional training method to train the sub-network, which is not enough to develop the expression ability of the sub-network under the current task.In this paper, we propose Model Selection - Knowledge Distillation (MS-KD) framework to solve the above problems. Specifically, we develop multiple pruning criteria for the primitive network, and the potential optimal structure is obtained through model selection.Furthermore, instead of traditional training methods, we use knowledge distillation to train the learned sub-network and make full use of the structure advantages of the sub-network.To validate our approach, we conduct extensive experiments on prevalent image classification datasets.The results demonstrate that our MS-KD framework outperforms the existing methods under a wide range of data sets, models, and inference costs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Knowledge Distillation Beyond Model Compression
    Sarfraz, Fahad
    Arani, Elahe
    Zonooz, Bahram
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6136 - 6143
  • [2] Patient Knowledge Distillation for BERT Model Compression
    Sun, Siqi
    Cheng, Yu
    Gan, Zhe
    Liu, Jingjing
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4323 - 4332
  • [3] Triplet Knowledge Distillation Networks for Model Compression
    Tang, Jialiang
    Jiang, Ning
    Yu, Wenxin
    Wu, Wenqin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Private Model Compression via Knowledge Distillation
    Wang, Ji
    Bao, Weidong
    Sun, Lichao
    Zhu, Xiaomin
    Cao, Bokai
    Yu, Philip S.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1190 - +
  • [5] Analysis of Model Compression Using Knowledge Distillation
    Hong, Yu-Wei
    Leu, Jenq-Shiou
    Faisal, Muhamad
    Prakosa, Setya Widyawan
    IEEE ACCESS, 2022, 10 : 85095 - 85105
  • [6] Compression of Acoustic Model via Knowledge Distillation and Pruning
    Li, Chenxing
    Zhu, Lei
    Xu, Shuang
    Gao, Peng
    Xu, Bo
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2785 - 2790
  • [7] Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains
    Pan, Haojie
    Wang, Chengyu
    Qiu, Minghui
    Zhang, Yichang
    Li, Yaliang
    Huang, Jun
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 3026 - 3036
  • [8] KED: A Deep-Supervised Knowledge Enhancement Self-Distillation Framework for Model Compression
    Lai, Yutong
    Ning, Dejun
    Liu, Shipeng
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 831 - 835
  • [9] Model Compression Algorithm via Reinforcement Learning and Knowledge Distillation
    Liu, Botao
    Hu, Bing-Bing
    Zhao, Ming
    Peng, Sheng-Lung
    Chang, Jou-Ming
    Tsoulos, Ioannis G.
    MATHEMATICS, 2023, 11 (22)
  • [10] Model Compression Based on Knowledge Distillation and Its Application in HRRP
    Chen, Xiaojiao
    An, Zhenyu
    Huang, Liansheng
    He, Shiying
    Wang, Zhen
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1268 - 1272