TRIPLE MONOGENIC FUNCTIONS AND HIGHER SPIN DIRAC OPERATORS

被引:0
|
作者
Brackx, F. [1 ]
Eelbode, D. [2 ]
Raeymaekers, T. [1 ]
Van De Voorde, L. [1 ]
机构
[1] Univ Ghent, Fac Engn, Dept Math Anal, Clifford Res Grp, Ghent, Belgium
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Clifford analysis; several variables; higher spin operators; monogenics; REPRESENTATIONS;
D O I
10.1142/S0129167X11007021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Clifford analysis context a specific type of solution for the higher spin Dirac operators Q(k,l) (k >= l is an element of N) is studied; these higher spin Dirac operators can be seen as generalizations of the classical Rarita-Schwinger operator. To that end subspaces of the space of triple monogenic polynomials are introduced and their algebraic structure is investigated. Also a dimensional analysis is carried out.
引用
收藏
页码:759 / 774
页数:16
相关论文
共 50 条
  • [1] Dirac Operators with Gradient Potentials and Related Monogenic Functions
    Gu, Longfei
    Ma, Daowei
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (05)
  • [2] Dirac Operators with Gradient Potentials and Related Monogenic Functions
    Longfei Gu
    Daowei Ma
    Complex Analysis and Operator Theory, 2020, 14
  • [3] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [4] Twisted Higher Spin Dirac Operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (02) : 429 - 447
  • [5] A toy model for higher spin Dirac operators
    D. Eelbode
    L. Van de Voorde
    Physics of Atomic Nuclei, 2010, 73 : 282 - 287
  • [6] On the fundamental solution for higher spin Dirac operators
    Eelbode, D.
    Raeymaekers, T.
    Van Lancker, P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 555 - 564
  • [7] On an Inductive Construction of Higher Spin Dirac Operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1500 - +
  • [8] A Toy Model for Higher Spin Dirac Operators
    Eelbode, D.
    Van de Voorde, L.
    PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 282 - 287
  • [9] Polynomial Solutions For Arbitrary Higher Spin Dirac Operators
    Eelbode, D.
    Raeymaekers, T.
    EXPERIMENTAL MATHEMATICS, 2015, 24 (03) : 339 - 354
  • [10] Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
    Eelbode, D.
    Raeymaekers, T.
    Van der Jeugt, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)