On an Inductive Construction of Higher Spin Dirac Operators

被引:0
|
作者
De Schepper, H. [1 ]
Eelbode, D. [2 ]
Raeymaekers, T. [1 ]
机构
[1] Univ Ghent, Clifford Res Grp, Dept Math Anal, Galglaan 2, B-9000 Ghent, Belgium
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Higher spin Dirac operator; Dirac operator; Rarita Schwinger operator;
D O I
10.1063/1.3498058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this contribution, we introduce higher spin Dirac operators, i.e. a specific class of differential operators in Clifford analysis of several vector variables, motivated by equations from theoretical physics. In particular, the higher spin Dirac operator in three vector variables will be explicitly constructed, starting from a description of the so-called twisted Rarita-Schwinger operator.
引用
收藏
页码:1500 / +
页数:2
相关论文
共 50 条
  • [1] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [2] Twisted Higher Spin Dirac Operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (02) : 429 - 447
  • [3] A toy model for higher spin Dirac operators
    D. Eelbode
    L. Van de Voorde
    Physics of Atomic Nuclei, 2010, 73 : 282 - 287
  • [4] On the fundamental solution for higher spin Dirac operators
    Eelbode, D.
    Raeymaekers, T.
    Van Lancker, P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 555 - 564
  • [5] A Toy Model for Higher Spin Dirac Operators
    Eelbode, D.
    Van de Voorde, L.
    PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 282 - 287
  • [6] Polynomial Solutions For Arbitrary Higher Spin Dirac Operators
    Eelbode, D.
    Raeymaekers, T.
    EXPERIMENTAL MATHEMATICS, 2015, 24 (03) : 339 - 354
  • [7] TRIPLE MONOGENIC FUNCTIONS AND HIGHER SPIN DIRAC OPERATORS
    Brackx, F.
    Eelbode, D.
    Raeymaekers, T.
    Van De Voorde, L.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (06) : 759 - 774
  • [8] Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
    Eelbode, D.
    Raeymaekers, T.
    Van der Jeugt, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [9] On a special type of solutions of arbitrary higher spin Dirac operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (32)
  • [10] On the Dirac and Spin-Dirac Operators
    E. A. Notte-Cuello
    Advances in Applied Clifford Algebras, 2010, 20 : 765 - 780