TRIPLE MONOGENIC FUNCTIONS AND HIGHER SPIN DIRAC OPERATORS

被引:0
|
作者
Brackx, F. [1 ]
Eelbode, D. [2 ]
Raeymaekers, T. [1 ]
Van De Voorde, L. [1 ]
机构
[1] Univ Ghent, Fac Engn, Dept Math Anal, Clifford Res Grp, Ghent, Belgium
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Clifford analysis; several variables; higher spin operators; monogenics; REPRESENTATIONS;
D O I
10.1142/S0129167X11007021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Clifford analysis context a specific type of solution for the higher spin Dirac operators Q(k,l) (k >= l is an element of N) is studied; these higher spin Dirac operators can be seen as generalizations of the classical Rarita-Schwinger operator. To that end subspaces of the space of triple monogenic polynomials are introduced and their algebraic structure is investigated. Also a dimensional analysis is carried out.
引用
收藏
页码:759 / 774
页数:16
相关论文
共 50 条
  • [11] On a special type of solutions of arbitrary higher spin Dirac operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (32)
  • [12] On the Dirac and Spin-Dirac Operators
    E. A. Notte-Cuello
    Advances in Applied Clifford Algebras, 2010, 20 : 765 - 780
  • [13] On the Dirac and Spin-Dirac Operators
    Notte-Cuello, E. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 765 - 780
  • [14] Polynomial Invariants for General Higher Spin Dirac Operators: A Toy Model
    Eelbode, David
    Smid, Dalibor
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1504 - +
  • [15] Higher Order Gradients of Monogenic Functions
    Luca Baracco
    Stefano Pinton
    The Journal of Geometric Analysis, 2022, 32
  • [16] Higher Order Gradients of Monogenic Functions
    Baracco, Luca
    Pinton, Stefano
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [17] Higher Spin Dirac Operators Between Spaces of Simplicial Monogenics in Two Vector Variables
    Brackx, F.
    Eelbode, D.
    Van de Voorde, L.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2011, 14 (01) : 1 - 20
  • [18] Syzygies of multi-variable higher spin Dirac operators on R3
    Damiano, Alberto
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) : 343 - 355
  • [19] Dirac Operators on Hermitian Spin Surfaces
    B. Alexandrov
    S. Ivanov
    Annals of Global Analysis and Geometry, 2000, 18 : 529 - 539
  • [20] Higher Spin Dirac Operators Between Spaces of Simplicial Monogenics in Two Vector Variables
    F. Brackx
    D. Eelbode
    L. Van de Voorde
    Mathematical Physics, Analysis and Geometry, 2011, 14 : 1 - 20