LERANet: Low-light Enhancement Network based on Retinex and Attention

被引:0
|
作者
He, Renjie [1 ]
Guo, Xintao [1 ]
Zhou, Wei [1 ]
He, Mingyi [1 ]
机构
[1] Northwestern Polytech Univ, Xian 710072, Shaanxi, Peoples R China
关键词
Low-light enhancement; Retinex; attention; CNN; VARIATIONAL MODEL;
D O I
10.1109/ICIEA51954.2021.9516292
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The performance of vision based applications is often limited by low-light imaging environments. While various methods have been proposed to enhance image contrast, noise is inevitably amplified. In addition, most methods result in over-enhancement in bright regions. In this paper, we consider a convolutional neural network, named as LERANet, to decouple a dark image into reflectance and illumination, which can thus enhance contrast and reduce noise. An attention module is also integrated in the network to avoid over-enhancement. Experimental results demonstrate the effectiveness of the proposed LERANet on noise suppression and detail preservation. In addition, both subjective and objective comparisons with state-of-the-art algorithms indicate the superiority of the proposed method.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 50 条
  • [41] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [42] Low-light image enhancement based on Retinex decomposition and adaptive gamma correction
    Yang, Jingyu
    Xu, Yuwei
    Yue, Huanjing
    Jiang, Zhongyu
    Li, Kun
    IET IMAGE PROCESSING, 2021, 15 (05) : 1189 - 1202
  • [43] Improved Retinex-Theory-Based Low-Light Image Enhancement Algorithm
    Wang, Jiarui
    Wang, Hanjia
    Sun, Yu
    Yang, Jie
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [44] The Modified Unsupervised Low-Light Image Enhancement Approach Based on the Retinex Theory
    Zhang, Yingchun
    Jiang, Shan
    Liu, Xuan
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 431 - 436
  • [45] Research on low-light image enhancement based on MER-Retinex algorithm
    Zhou, Rongfeng
    Wang, Rugang
    Wang, Yuanyuan
    Zhou, Feng
    Guo, Naihong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 803 - 811
  • [46] Low-Light Image Enhancement Algorithm Based on Improved Retinex-Net
    Ou J.
    Hu X.
    Yang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (01): : 77 - 86
  • [47] IRNet: An Improved Zero-Shot Retinex Network for Low-Light Image Enhancement
    Xie, Chao
    Tang, Hao
    Fei, Linfeng
    Zhu, Hongyu
    Hu, Yaocong
    ELECTRONICS, 2023, 12 (14)
  • [48] Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement
    Yang, Wenhan
    Wang, Wenjing
    Huang, Haofeng
    Wang, Shiqi
    Liu, Jiaying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2072 - 2086
  • [49] Learning Multi-scale Retinex with Residual Network for Low-Light Image Enhancement
    Ma, Long
    Lin, Jie
    Shang, Jingjie
    Zhong, Wei
    Fan, Xin
    Luo, Zhongxuan
    Liu, Risheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 291 - 302
  • [50] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588