Improved Retinex-Theory-Based Low-Light Image Enhancement Algorithm

被引:4
|
作者
Wang, Jiarui [1 ]
Wang, Hanjia [1 ]
Sun, Yu [1 ]
Yang, Jie [2 ]
机构
[1] Dalian Naval Acad, Dalian 116013, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
image processing; low-light image enhancement; Retinex theory; low; normal-light image; ADAPTIVE HISTOGRAM EQUALIZATION;
D O I
10.3390/app13148148
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Researchers working on image processing have had a hard time handling low-light images due to their low contrast, noise, and brightness. This paper presents an improved method that uses the Retinex theory to enhance low-light images, with a network model mainly composed of a Decom-Net and an Enhance-Net. Residual connectivity is fully utilized in both the Decom-Net and Enhance-Net to reduce the possible loss of image details. Additionally, Enhance-Net introduces a positional pixel attention mechanism that directly incorporates the global information of the image. Specifically, Decom-Net serves to decompose the low-light image into illumination and reflection maps, and Enhance-Net serves to increase the brightness of the illumination map. Finally, via adaptive image fusion, the reflectance map and the enhanced illuminance map are fused to obtain the final enhanced image. Experiments show better results in terms of both subjective visual aspects and objective evaluation indicators. Compared to RetinexNet, the proposed method shows improvements in the full-reference evaluation metrics, including a 4.6% improvement in PSNR, a 1.8% improvement in SSIM, and a 10.8% improvement in LPIPS. Additionally, it achieved an average improvement of 17.3% in the no-reference evaluation metric NIQE.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Low-Light Mine Image Enhancement Algorithm Based on Improved Retinex
    Tian, Feng
    Wang, Mengjiao
    Liu, Xiaopei
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [2] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [3] Low-Light Image Enhancement Algorithm Based on Improved Retinex-Net
    Ou J.
    Hu X.
    Yang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (01): : 77 - 86
  • [4] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [5] The Retinex enhancement algorithm for low-light intensity image based on improved illumination map
    Weng, Ruidi
    Zhang, Ya
    Wu, Hanyang
    Wang, Weiyong
    Wang, Dongyun
    IET IMAGE PROCESSING, 2024, 18 (12) : 3381 - 3392
  • [6] Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement
    Al-Hashim, Mohammad Abid
    Al-Ameen, Zohair
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 733 - 743
  • [7] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [8] Low Light Image Enhancement Algorithm Based on Improved Retinex
    Zhang, Yingchun
    Zhang, Tianfei
    Liu, Chunjing
    Zhang, Lei
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 184 - 189
  • [9] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [10] Research on low-light image enhancement based on MER-Retinex algorithm
    Zhou, Rongfeng
    Wang, Rugang
    Wang, Yuanyuan
    Zhou, Feng
    Guo, Naihong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 803 - 811