HINE: Heterogeneous Information Network Embedding

被引:16
|
作者
Chen, Yuxin [1 ]
Wang, Chenguang [2 ]
机构
[1] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, EECS, Beijing, Peoples R China
[2] IBM Res Almaden, San Jose, CA USA
关键词
Heterogeneous information network; Network embedding; Semantic embedding;
D O I
10.1007/978-3-319-55753-3_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multihop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results
引用
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [41] Semantic Based Heterogeneous Information Network Embedding for Patent Citation Recommendation
    Zhang, Yanping
    Li, Shuang
    Chen, Xi
    Qian, Fulan
    Zhao, Shu
    Zhu, Shuwei
    Wang, Yulu
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 518 - 527
  • [42] Fusing heterogeneous information for multi-modal attributed network embedding
    Yang, Jieyi
    Zhu, Feng
    Dong, Yihong
    Qian, Jiangbo
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22328 - 22347
  • [43] User behavior prediction via heterogeneous information preserving network embedding
    Yuan, Weiwei
    He, Kangya
    Han, Guangjie
    Guan, Donghai
    Khattak, Asad Masood
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 92 : 52 - 58
  • [44] Attention-Based Knowledge Tracing with Heterogeneous Information Network Embedding
    Zhang, Nan
    Du, Ye
    Deng, Ke
    Li, Li
    Shen, Jun
    Sun, Geng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2020), PT I, 2020, 12274 : 95 - 103
  • [45] Heterogeneous information network embedding for user behavior analysis on social media
    Zhao, Xiaofang
    Jin, Zhigang
    Liu, Yuhong
    Hu, Yi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (07): : 5683 - 5699
  • [46] Heterogeneous information network embedding with incomplete multi-view fusion
    Susu ZHENG
    Weiwei YUAN
    Donghai GUAN
    Frontiers of Computer Science, 2022, 16 (05) : 212 - 214
  • [47] Multi-source information fusion based heterogeneous network embedding
    Li, Bentian
    Pi, Dechang
    Lin, Yunxia
    Khan, Izhar Ahmed
    Cui, Lin
    INFORMATION SCIENCES, 2020, 534 : 53 - 71
  • [48] Innovative Application of Heterogeneous Information Network Embedding Technology in Recommender Systems
    Shi J.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [49] Fusing heterogeneous information for multi-modal attributed network embedding
    Yang Jieyi
    Zhu Feng
    Dong Yihong
    Qian Jiangbo
    Applied Intelligence, 2023, 53 : 22328 - 22347
  • [50] Heterogeneous information network embedding based on multiperspective metapath for question routing
    Qian, Lingfei
    Wang, Jian
    Lin, Hongfei
    Xu, Bo
    Yang, Liang
    KNOWLEDGE-BASED SYSTEMS, 2022, 240