HINE: Heterogeneous Information Network Embedding

被引:16
|
作者
Chen, Yuxin [1 ]
Wang, Chenguang [2 ]
机构
[1] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, EECS, Beijing, Peoples R China
[2] IBM Res Almaden, San Jose, CA USA
关键词
Heterogeneous information network; Network embedding; Semantic embedding;
D O I
10.1007/978-3-319-55753-3_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multihop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results
引用
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [21] Outer product enhanced heterogeneous information network embedding for recommendation
    He, Yunfei
    Zhang, Yiwen
    Qi, Lianyong
    Yan, Dengcheng
    He, Qiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [22] Question Embedding on Weighted Heterogeneous Information Network for Knowledge Tracing
    Sun, Jianwen
    Du, Shangheng
    Zhou, Jianpeng
    Yuan, Xin
    Shen, Xiaoxuan
    Liang, Ruxia
    ACM Transactions on Knowledge Discovery from Data, 2024, 19 (01)
  • [23] TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation
    El-Kishky, Ahmed
    Markovich, Thomas
    Park, Serim
    Verma, Chetan
    Kim, Baekjin
    Eskander, Ramy
    Malkov, Yury
    Portman, Frank
    Samaniego, Sofia
    Xiao, Ying
    Haghighi, Aria
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2842 - 2850
  • [24] Temporal Heterogeneous Information Network Embedding via Semantic Evolution
    Zhou, Wei
    Huang, Hong
    Shi, Ruize
    Song, Xiran
    Lin, Xue
    Wang, Xiao
    Jin, Hai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 13031 - 13042
  • [25] Learning and Updating Node Embedding on Dynamic Heterogeneous Information Network
    Xie, Yuanzhen
    Ou, Zijing
    Chen, Liang
    Liu, Yang
    Xu, Kun
    Yang, Carl
    Zheng, Zibin
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 184 - 192
  • [26] Deep Adversarial Completion for Sparse Heterogeneous Information Network Embedding
    Zhao, Kai
    Bai, Ting
    Wu, Bin
    Wang, Bai
    Zhang, Youjie
    Yang, Yuanyu
    Nie, Jian-Yun
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 508 - 518
  • [27] Preface of special issue on heterogeneous information network embedding and applications
    Li, Weimin
    Liu, Lu
    Wang, Kevin I. K.
    Jin, Qun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 152 : 331 - 332
  • [28] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [29] An Adaptive Semantic Mining Framework for Heterogeneous Information Network Embedding
    Shao, Hao
    Zhu, Rangang
    Liu, Hui
    Wang, Lunwen
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1384 - 1401
  • [30] Heterogeneous Information Network Embedding with Convolutional Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Zhu, Kai
    Xu, Ming
    Wang, Chongjun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,