Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA

被引:13
|
作者
Zareb, M. [1 ,2 ]
Nouibat, W. [1 ]
Bestaoui, Y. [3 ]
Ayad, R. [1 ,4 ]
Bouzid, Y. [5 ]
机构
[1] USTO MB, LEPESA Lab, Oran, Algeria
[2] Univ Mascara, Mascara, Algeria
[3] UEVE, IBISC Lab, Evry, France
[4] UHBC, Chlef, Algeria
[5] EMP, CSCS Lab, Bordi El Bahri, Algeria
关键词
Mini-UAV; Fuzzy control; Autopilot; Genetic algorithms; CONTROLLER; SYSTEMS; OPTIMIZATION; PSO;
D O I
10.1007/s40998-019-00214-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an off-line design strategy of an intelligent 3D autopilot of Micro-UAV Quadrotor. It consists of hybridization between two fuzzy controllers for the x and y motions and four PID classical controllers for the attitude/altitude motions. Genetic algorithms are used to adapt and optimize the value of the six controllers' parameters to achieve the best performance and decrease the consumed energy. Also, in order to ensure the global optimum control parameters, genetic algorithm named Bi-GA is used to automatically configure the two GAs using for the tuning process. This design strategy can be used to different types of Quadrotor (with cross or X configuration). Initially, in order to get the controller parameters, simulation tests are made on a commercial Quadrotor named AR.Drone V2. Finally, these parameters values are tested in an experiment using the robot operating system. The results of these experimentations confirm the effectiveness of using genetic algorithms in the design of intelligent PID autopilot.
引用
收藏
页码:347 / 375
页数:29
相关论文
共 50 条
  • [31] Terminal Sliding Mode Autopilot Design for a High Maneuver UAV
    Tan, Juan
    Fan, Yonghua
    Zhu, Chuanxiang
    Liu, Zhao
    Yan, Pengpeng
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 73 - 78
  • [32] Design of A Backstepping Integral Adaptive Controller for Quadrotor UAV
    Wang H.
    Zhou L.
    Zhou, Laihong (lai_h@126.com), 1600, China Ordnance Industry Corporation (42): : 1283 - 1289
  • [33] Robust control design for the quadrotor UAV with a suspended payload
    Yang, Sen
    Xian, Bin
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 469 - 473
  • [34] Discrete Optimal Control for a Quadrotor UAV: Experimental Approach
    Santos, Omar
    Romero, Hugo
    Salazar, Sergio
    Lozano, Rogelio
    2014 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2014, : 1138 - 1145
  • [35] Design of Gas Monitoring Terminal Based on Quadrotor UAV
    Liu, Yang
    Chen, Lei
    Fan, Shurui
    Zhang, Yan
    SENSORS, 2022, 22 (14)
  • [36] A design modification for a quadrotor UAV: modeling, control and implementation
    Badr, Sherif
    Mehrez, Omar
    Kabeel, A. E.
    ADVANCED ROBOTICS, 2019, 33 (01) : 13 - 32
  • [37] Path Planning and Control of a Quadrotor UAV: A Symbolic Approach
    Zhang, Tianze
    Huo, Xin
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2750 - 2755
  • [38] Nonlinear Autopilot Design for Fixed-Wing UAV Using Disturbance Observer Based Backstepping
    Lu, Hao
    Zhen, Yan
    Hao, Mingrui
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4423 - 4428
  • [39] PSO tuned FLC for full autopilot control of quadrotor to tackle wind disturbance using bond graph approach
    Mohammadi, Vahid
    Ghaemi, Sehraneh
    Kharrati, Hamed
    APPLIED SOFT COMPUTING, 2018, 65 : 184 - 195
  • [40] Novel Approach in Nonlinear Autopilot Design
    Binazadeh, T.
    Shafiei, M. H.
    JOURNAL OF AEROSPACE ENGINEERING, 2016, 29 (01)