Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA

被引:13
|
作者
Zareb, M. [1 ,2 ]
Nouibat, W. [1 ]
Bestaoui, Y. [3 ]
Ayad, R. [1 ,4 ]
Bouzid, Y. [5 ]
机构
[1] USTO MB, LEPESA Lab, Oran, Algeria
[2] Univ Mascara, Mascara, Algeria
[3] UEVE, IBISC Lab, Evry, France
[4] UHBC, Chlef, Algeria
[5] EMP, CSCS Lab, Bordi El Bahri, Algeria
关键词
Mini-UAV; Fuzzy control; Autopilot; Genetic algorithms; CONTROLLER; SYSTEMS; OPTIMIZATION; PSO;
D O I
10.1007/s40998-019-00214-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an off-line design strategy of an intelligent 3D autopilot of Micro-UAV Quadrotor. It consists of hybridization between two fuzzy controllers for the x and y motions and four PID classical controllers for the attitude/altitude motions. Genetic algorithms are used to adapt and optimize the value of the six controllers' parameters to achieve the best performance and decrease the consumed energy. Also, in order to ensure the global optimum control parameters, genetic algorithm named Bi-GA is used to automatically configure the two GAs using for the tuning process. This design strategy can be used to different types of Quadrotor (with cross or X configuration). Initially, in order to get the controller parameters, simulation tests are made on a commercial Quadrotor named AR.Drone V2. Finally, these parameters values are tested in an experiment using the robot operating system. The results of these experimentations confirm the effectiveness of using genetic algorithms in the design of intelligent PID autopilot.
引用
收藏
页码:347 / 375
页数:29
相关论文
共 50 条
  • [21] QUADROTOR UAV CONTROL: ONLINE LEARNING APPROACH
    Pipatpaibul, Pong-in
    Ouyang, P. R.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE - 2011, VOL 6, PTS A AND B, 2012, : 701 - 710
  • [22] A Fault Diagnosis Comparative Approach for a Quadrotor UAV
    Aviles-Espinoza, J. J.
    Anzurez-Marin, J.
    Lopez-Estrada, F. R.
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [23] Simultaneous tailplane of small UAV and autopilot system design
    Coban, Sezer
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2019, 91 (10): : 1308 - 1313
  • [24] Flight PID controller design for a UAV quadrotor
    Salih, Atheer L.
    Moghavvemi, M.
    Mohamed, Haider A. F.
    Gaeid, Khalaf Sallom
    SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (23): : 3660 - 3667
  • [25] Evolutionary Design for Image Filter using GA
    Bao, Zhiguo
    Watanabe, Takahiro
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 164 - 169
  • [26] Fuzzy gain-scheduled missile autopilot design using evolutionary algorithms
    Sreenuch, T
    Tsourdos, A
    Hughes, EJ
    White, BA
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 346 - 351
  • [27] Fuzzy gain-scheduled missile autopilot design using evolutionary algorithms
    Screenuch, T.
    Tsourdos, A.
    Hughes, E. J.
    White, B. A.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (04) : 1323 - 1339
  • [28] Robust Control Design of a Quadrotor UAV Based on Incremental Hierarchical Sliding Mode Approach
    Babaie, Raziyeh
    Ehyaei, Amir Farhad
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 835 - 840
  • [29] Autopilot design of tilt-rotor UAV using particle swarm optimization method
    Lee, Jang-Ho
    Min, Byoung-Mun
    Kim, Eung-Tai
    2007 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-6, 2007, : 435 - +
  • [30] Fractional Order Sliding Mode Control with GA Tuning for a UAV Quadrotor
    Alabsari, Najib
    Saif, Abdul-Wahid A.
    El-Ferik, Sami
    Duffuaa, Salih
    Derbel, Nabil
    IEEE Access, 2024, 12 : 179204 - 179218