Linear port-Hamiltonian descriptor systems

被引:92
|
作者
Beattie, Christopher [1 ]
Mehrmann, Volker [2 ]
Xu, Hongguo [3 ]
Zwart, Hans [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TU Berlin, Inst Math MA 4 5, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Port-Hamiltonian system; Descriptor system; Differential-algebraic equation; Passivity; Stability; System transformation; Differentiation index; Strangeness-index; Skew-adjoint operator; PRESERVING MODEL-REDUCTION; REGULARIZATION; STABILIZATION; FORMULATION; EQUATIONS; NETWORKS; DYNAMICS; FORM;
D O I
10.1007/s00498-018-0223-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [42] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [43] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [44] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [45] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [46] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [47] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [48] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [49] On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems
    Jacob, Birgit
    Kaiser, Julia T.
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 661 - 666
  • [50] Exponential Decay Rate of Linear Port-Hamiltonian Systems: A Multiplier Approach
    Mora, Luis A.
    Morris, Kirsten
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1767 - 1772