Linear port-Hamiltonian descriptor systems

被引:92
|
作者
Beattie, Christopher [1 ]
Mehrmann, Volker [2 ]
Xu, Hongguo [3 ]
Zwart, Hans [4 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TU Berlin, Inst Math MA 4 5, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Port-Hamiltonian system; Descriptor system; Differential-algebraic equation; Passivity; Stability; System transformation; Differentiation index; Strangeness-index; Skew-adjoint operator; PRESERVING MODEL-REDUCTION; REGULARIZATION; STABILIZATION; FORMULATION; EQUATIONS; NETWORKS; DYNAMICS; FORM;
D O I
10.1007/s00498-018-0223-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [22] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [23] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [24] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [25] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [26] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [27] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [28] Optimization-based model order reduction of port-Hamiltonian descriptor systems
    Schwerdtner, Paul
    Moser, Tim
    Mehrmann, Volker
    Voigt, Matthias
    SYSTEMS & CONTROL LETTERS, 2023, 182
  • [29] MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB
    Moser, Tim
    Durmann, Julius
    Bonauer, Maximilian
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (06) : 476 - 489
  • [30] On backstepping boundary control for a class of linear port-Hamiltonian systems
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    Macchelli, Alessandro
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,