Effectiveness of error correcting output codes in multiclass learning problems

被引:0
|
作者
Masulli, F
Valentini, G
机构
[1] Ist Nazl Fis Mat, I-16146 Genoa, Italy
[2] Univ Genoa, DISI, I-16146 Genoa, Italy
来源
MULTIPLE CLASSIFIER SYSTEMS | 2000年 / 1857卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the framework of decomposition methods for multiclass classification problems, error correcting output codes (ECOC) can be fruitfully used as codewords for coding classes in order to enhance the generalization capability of learning machines. The effectiveness of error correcting output codes depends mainly on the independence of code-word bits and on the accuracy by which each dichotomy is learned. Separated and non-linear dichotomizers can improve the independence among computed codeword bits, thus fully exploiting the error recovering capabilities of ECOC. In the experimentation presented in this paper we compare ECOC decomposition methods implemented through monolithic multi-layer perceptrons and sets of linear and non-linear independent dichotomizers. The most effectiveness of ECOC decomposition scheme is obtained by Parallel Non-linear Dichotomizers (PND), a learning machine based on decomposition of polychotomies into dichotomics, using non linear independent dichotomizers.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [31] Recoding Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 11 - +
  • [32] On the learnability and design of output codes for multiclass problems
    Crammer, K
    Singer, Y
    MACHINE LEARNING, 2002, 47 (2-3) : 201 - 233
  • [33] Improvement of performance in multiclass problems by using biclassification based on error-correcting output code
    Kim, Young Bun
    Oh, Jung Hun
    Gao, Jean
    WCECS 2007: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2007, : 677 - 682
  • [34] Joint learning of error-correcting output codes and dichotomizers from data
    Guoqiang Zhong
    Kaizhu Huang
    Cheng-Lin Liu
    Neural Computing and Applications, 2012, 21 : 715 - 724
  • [35] Joint learning of error-correcting output codes and dichotomizers from data
    Zhong, Guoqiang
    Huang, Kaizhu
    Liu, Cheng-Lin
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (04): : 715 - 724
  • [36] Minimal classification method with error-correcting codes for multiclass recognition
    Sivalingam, DM
    Pandian, N
    Ben-Arie, J
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (05) : 663 - 680
  • [37] Face verification using error correcting output codes
    Kittler, J
    Ghaderi, R
    Windeatt, T
    Matas, J
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 755 - 760
  • [38] Maximum Margin Tree Error Correcting Output Codes
    Zheng, Fa
    Xue, Hui
    Chen, Xiaohong
    Wang, Yunyun
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 681 - 691
  • [39] Minimal design of error-correcting output codes
    Angel Bautista, Miguel
    Escalera, Sergio
    Baro, Xavier
    Radeva, Petia
    Vitria, Jordi
    Pujol, Oriol
    PATTERN RECOGNITION LETTERS, 2012, 33 (06) : 693 - 702
  • [40] Face verification via error correcting output codes
    Kittler, J
    Ghaderi, R
    Windeatt, T
    Matas, J
    IMAGE AND VISION COMPUTING, 2003, 21 (13-14) : 1163 - 1169