Effectiveness of error correcting output codes in multiclass learning problems

被引:0
|
作者
Masulli, F
Valentini, G
机构
[1] Ist Nazl Fis Mat, I-16146 Genoa, Italy
[2] Univ Genoa, DISI, I-16146 Genoa, Italy
来源
MULTIPLE CLASSIFIER SYSTEMS | 2000年 / 1857卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the framework of decomposition methods for multiclass classification problems, error correcting output codes (ECOC) can be fruitfully used as codewords for coding classes in order to enhance the generalization capability of learning machines. The effectiveness of error correcting output codes depends mainly on the independence of code-word bits and on the accuracy by which each dichotomy is learned. Separated and non-linear dichotomizers can improve the independence among computed codeword bits, thus fully exploiting the error recovering capabilities of ECOC. In the experimentation presented in this paper we compare ECOC decomposition methods implemented through monolithic multi-layer perceptrons and sets of linear and non-linear independent dichotomizers. The most effectiveness of ECOC decomposition scheme is obtained by Parallel Non-linear Dichotomizers (PND), a learning machine based on decomposition of polychotomies into dichotomics, using non linear independent dichotomizers.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [11] Optimisation of multiclass supervised classification based on using output codes with error-correcting
    Ryazanov V.V.
    Pattern Recognition and Image Analysis, 2016, 26 (2) : 262 - 265
  • [12] Multiclass classification of adaptive error-correcting output codes based on confusion matrix
    Zhou, Jin-Deng
    Wang, Xiao-Dan
    Zhou, Hong-Jian
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (07): : 1518 - 1524
  • [13] Learning error-correcting output codes from data
    Alpaydin, E
    Mayoraz, E
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 743 - 748
  • [14] Sensitive error correcting output codes
    Langford, J
    Beygelzimer, A
    LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 158 - 172
  • [15] Evolving output codes for multiclass problems
    Garcia-Pedrajas, Nicolas
    Fyfe, Colin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) : 93 - 106
  • [16] Online error correcting output codes
    Escalera, Sergio
    Masip, David
    Puertas, Eloi
    Radeva, Petia
    Pujol, Oriol
    PATTERN RECOGNITION LETTERS, 2011, 32 (03) : 458 - 467
  • [17] Deep Error Correcting Output Codes
    Zhong, Guoqiang
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Cheriet, Mohamed
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 250 - 255
  • [18] A study on Error Correcting Output Codes
    Pimenta, Edgar
    Gama, Joao
    2005 PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 218 - 223
  • [19] ECG beats classification using multiclass support vector machines with error correcting output codes
    Ubeyli, Elif Derya
    DIGITAL SIGNAL PROCESSING, 2007, 17 (03) : 675 - 684
  • [20] Efficient Error-correcting Output Codes for Adversarial Learning Robustness
    Wan, Li
    Alpcan, Tansu
    Viterbo, Emanuele
    Kuijper, Margreta
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2345 - 2350