Numerical Methods for a Class of Fractional Advection-Diffusion Models with Functional Delay

被引:2
|
作者
Pimenov, Vladimir [1 ,2 ]
Hendy, Ahmed [1 ]
机构
[1] Ural Fed Univ, Dept Computat Math, Ekaterinburg, Russia
[2] Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯科学基金会;
关键词
Fractional partial differential equation; Functional delay; Grunwald; Letnikov approximations; Grid schemes; Interpolation; Extrapolation; Convergence order; HEAT-CONDUCTION EQUATION; FINITE-DIFFERENCE APPROXIMATIONS; CONVERGENCE; STABILITY;
D O I
10.1007/978-3-319-57099-0_60
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider a technique of creation of difference schemes for time and space fractional partial differential equations with effect of delay on time. For two sided space fractional diffusion equation and fractional advection equations with time functional after-effect, an implicit numerical method is constructed. We use shifted Grunwald-Letnikov formulae to approximate space fractional derivatives and L1-algorithm to approximate time fractional derivatives. We also use piece-wise constant interpolation and extrapolation by continuation for the prehistory of model with respect to time. The algorithm is a fractional analogue of the pure implicit numerical method in which the model is reduced on each time step to the solution of linear algebraic system. The order of convergence is obtained. Numerical experiments are carried out to support the obtained theoretical results.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
  • [21] Nonlinear Advection-Diffusion Models of Traffic Flow: a Numerical Study
    Matin, Hossein Nick Zinat
    Do, Dawson
    Delle Monache, Maria Laura
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2078 - 2083
  • [22] Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model
    Yu, Bo
    Jiang, Xiaoyun
    Qi, Haitao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1131 - 1150
  • [23] Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative
    Xu, Yufeng
    He, Zhimin
    Xu, Qinwu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) : 588 - 600
  • [24] Advances in fractional advection-diffusion models for anomalous solute transport in groundwater
    Wang, Jing-Rui
    Zhao, Jian-Shi
    Hu, Shi-Ruo
    Zhongguo Huanjing Kexue/China Environmental Science, 2022, 42 (12): : 5845 - 5855
  • [25] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [26] Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay
    Javidi M.
    Heris M.S.
    SeMA Journal, 2019, 76 (4) : 533 - 551
  • [27] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    1600, Centro de Informacion Tecnologica (25):
  • [28] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [29] Stability of a time fractional advection-diffusion system
    Arfaoui, Hassen
    Ben Makhlouf, Abdellatif
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [30] Moments for Tempered Fractional Advection-Diffusion Equations
    Yong Zhang
    Journal of Statistical Physics, 2010, 139 : 915 - 939