Numerical Methods for a Class of Fractional Advection-Diffusion Models with Functional Delay

被引:2
|
作者
Pimenov, Vladimir [1 ,2 ]
Hendy, Ahmed [1 ]
机构
[1] Ural Fed Univ, Dept Computat Math, Ekaterinburg, Russia
[2] Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯科学基金会;
关键词
Fractional partial differential equation; Functional delay; Grunwald; Letnikov approximations; Grid schemes; Interpolation; Extrapolation; Convergence order; HEAT-CONDUCTION EQUATION; FINITE-DIFFERENCE APPROXIMATIONS; CONVERGENCE; STABILITY;
D O I
10.1007/978-3-319-57099-0_60
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider a technique of creation of difference schemes for time and space fractional partial differential equations with effect of delay on time. For two sided space fractional diffusion equation and fractional advection equations with time functional after-effect, an implicit numerical method is constructed. We use shifted Grunwald-Letnikov formulae to approximate space fractional derivatives and L1-algorithm to approximate time fractional derivatives. We also use piece-wise constant interpolation and extrapolation by continuation for the prehistory of model with respect to time. The algorithm is a fractional analogue of the pure implicit numerical method in which the model is reduced on each time step to the solution of linear algebraic system. The order of convergence is obtained. Numerical experiments are carried out to support the obtained theoretical results.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
  • [11] Fractional step methods for spectral approximation of advection-diffusion equations
    Gervasio, P
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (07): : 1027 - 1050
  • [12] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [13] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [14] Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations
    Xu, Yufeng
    Agrawal, Om P.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1178 - 1193
  • [15] Lattice models of advection-diffusion
    Pierrehumbert, RT
    CHAOS, 2000, 10 (01) : 61 - 74
  • [16] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    Parvizi, M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    NUMERICAL ALGORITHMS, 2015, 68 (03) : 601 - 629
  • [17] Numerical Inverse Laplace Transform Methods for Advection-Diffusion Problems
    Kamran, Farman Ali
    Shah, Farman Ali
    Aly, Wael Hosny Fouad
    Aksoy, Hasan M.
    Alotaibi, Fahad
    Mahariq, Ibrahim
    SYMMETRY-BASEL, 2022, 14 (12):
  • [18] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    Numerical Algorithms, 2015, 68 : 601 - 629
  • [19] Numerical efficiency of some exponential methods for an advection-diffusion equation
    Eduardo Macias-Diaz, Jorge
    Inan, Bilge
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 1005 - 1029
  • [20] A second order numerical method for solving advection-diffusion models
    Company, R.
    Ponsoda, E.
    Romero, J. -V.
    Rosello, M. -D.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (5-6) : 806 - 811