Boolean functions with small spectral norm

被引:18
|
作者
Green, Ben [1 ]
Sanders, Tom [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WA, England
关键词
Fourier transform; spectral norm; L-1-norm; boolean functions; structure theorem;
D O I
10.1007/s00039-008-0654-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : F-2(n) ->{0, 1} be a boolean function, and suppose that the spectral norm parallel to f parallel to(A) := Sigma(r) vertical bar(f) over cap (r)vertical bar of f is at most M. Then [GRAPHICS] where L <= 2(2CM4) and each H-j is a subgroup of F-2(n). This result may be regarded as a quantitative analogue of the Cohen Helson - Rudin structure theorem for idempotent measures in locally compact abelian groups.
引用
收藏
页码:144 / 162
页数:19
相关论文
共 50 条
  • [41] Efficient spectral method for disjoint bi-decompositions of Boolean functions
    Falkowski, BJ
    Kannurao, S
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 313 - 316
  • [42] SPECTRAL CHARACTERIZATION OF THE SELF-DUALIZED CLASSIFICATION OF BOOLEAN FUNCTIONS.
    Miller, D.M.
    Muzio, J.C.
    1600, (61):
  • [43] Quantum Query Complexity of Boolean Functions with Small On-Sets
    Ambainis, Andris
    Iwama, Kazuo
    Nakanishi, Masaki
    Nishimura, Harumichi
    Raymond, Rudy
    Tani, Seiichiro
    Yamashita, Shigeru
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 907 - +
  • [44] DISJUNCTIVE NORMAL FORMS OF BOOLEAN FUNCTIONS WITH A SMALL NUMBER OF ZEROS
    KOGAN, AY
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (5-6): : 185 - 190
  • [45] Approximation of biased Boolean functions of small total influence by DNFs
    Keller, Nathan
    Lifshitz, Noam
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 667 - 679
  • [46] Comparative analysis of the complexity of boolean functions with a small number of zeros
    Maximov, Yu. V.
    DOKLADY MATHEMATICS, 2012, 86 (03) : 854 - 856
  • [47] Comparative analysis of the complexity of boolean functions with a small number of zeros
    Yu. V. Maximov
    Doklady Mathematics, 2012, 86 : 854 - 856
  • [49] A quantum algorithm to estimate the Gowers U2 norm and linearity testing of Boolean functions
    Jothishwaran, C. A.
    Tkachenko, Anton
    Gangopadhyay, Sugata
    Riera, Constanza
    Stanica, Pantelimon
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [50] BOOLEAN EQUATIONS AND DECOMPOSITION OF BOOLEAN FUNCTIONS
    ROZENFELD, TK
    SILAYEV, VN
    ENGINEERING CYBERNETICS, 1979, 17 (01): : 85 - 92