Quantum Query Complexity of Boolean Functions with Small On-Sets

被引:0
|
作者
Ambainis, Andris [1 ]
Iwama, Kazuo [2 ]
Nakanishi, Masaki [3 ]
Nishimura, Harumichi [4 ]
Raymond, Rudy [5 ]
Tani, Seiichiro [6 ,7 ]
Yamashita, Shigeru [3 ]
机构
[1] Latvian State Univ, Inst Math & Comp Sci, LV-1063 Riga, Latvia
[2] Kyoto Univ, Sch Informat, Kyoto, Japan
[3] NAIST, Grad Sch Informat Sci, Nara, Japan
[4] Osaka Prefecture Univ, Sch Sci, Osaka, Japan
[5] IBM Japan Ltd, Tokyo Res Lab, Kanagawa, Japan
[6] NTT Corp, NTT Commun Sci Lab, Kyoto, Japan
[7] ERATO, JST, SORST, QCI Project, Tokyo, Japan
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = vertical bar{x vertical bar f(x) = 1}vertical bar or the size of f's on-set. We prove that: (i) For poly(N) <= M <= 2(Nd) for some constant 0 < d < 1, the upper bound of Q(f) is O(root N log M/ log N). This bound is tight, namely there is Boolean function f such that Q(f) = Omega(root N log M/ log N). (ii) For the same range of M, the (also tight) lower bound of Q(f) is Omega(root N). (iii) The average value of Q(f) is bounded from above and below by Q(f) = O(log M + root N) and Q(f) = Omega(log M/ log N + root N), respectively. The first bound gives a simple way of bounding the quantum query complexity of testing some graph properties. In particular, it is proved that the quantum query complexity of planarity testing for a graph with n vertices Theta(N-3/4) where N = n(n-1)/2.
引用
收藏
页码:907 / +
页数:3
相关论文
共 50 条
  • [1] Partial Boolean Functions With Exact Quantum Query Complexity One
    Xu, Guoliang
    Qiu, Daowen
    ENTROPY, 2021, 23 (02) : 1 - 17
  • [2] Query complexity of Boolean functions on slices
    Byramji, Farzan
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [3] Quantum query complexity of Boolean functions under indefinite causal order
    Abbott, Alastair A.
    Mhalla, Mehdi
    Pocreau, Pierre
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [4] How Low can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions?
    Andris Ambainis
    Ronald de Wolf
    computational complexity, 2014, 23 : 305 - 322
  • [5] How Low can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions?
    Ambainis, Andris
    de Wolf, Ronald
    COMPUTATIONAL COMPLEXITY, 2014, 23 (02) : 305 - 322
  • [6] How Low Can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions?
    Ambainis, Andris
    de Wolf, Ronald
    2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2013, : 179 - 184
  • [7] Query complexity of Boolean functions on the middle slice of the cube
    Gerbner, Daniel
    Keszegh, Balazs
    Nagy, Daniel T.
    Nagy, Kartal
    Palvolgyi, Domotor
    Patkos, Balazs
    Wiener, Gabor
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 43 - 49
  • [8] Minimizing the average query complexity of learning monotone Boolean functions
    Torvik, VI
    Triantaphyllou, E
    INFORMS JOURNAL ON COMPUTING, 2002, 14 (02) : 144 - 174
  • [10] Boolean functions with a low polynomial degree and quantum query algorithms
    Ozols, R
    Freivalds, R
    Ivanovs, J
    Kalnina, E
    Lace, L
    Miyakawa, M
    Tatsumi, H
    Taimina, D
    SOFSEM 2005:THEORY AND PRACTICE OF COMPUTER SCIENCE, 2005, 3381 : 408 - 412