Calibrating strategies for evolutionary algorithms

被引:3
|
作者
Montero, Elizabeth [1 ]
Riff, Maria-Cristina [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Comp Sci, Valparaiso, Chile
关键词
D O I
10.1109/CEC.2007.4424498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The control of parameters during the execution of evolutionary algorithms is an open research area. In this paper, we propose new parameter control strategies for evolutionary approaches, based on reinforcement learning ideas. Our approach provides efficient and low cost adaptive techniques for parameter control. Moreover, it is a general method, thus it could be applied to any evolutionary approach having more than one operator. We contrast our results with tuning techniques and HAEA a random parameter control.
引用
收藏
页码:394 / 399
页数:6
相关论文
共 50 条
  • [1] On-the-fly calibrating strategies for evolutionary algorithms
    Montero, Elizabeth
    Riff, Maria-Cristina
    INFORMATION SCIENCES, 2011, 181 (03) : 552 - 566
  • [2] Learning hybridization strategies in evolutionary algorithms
    LaTorre, Antonio
    Pena, Jose-Maria
    Muelas, Santiago
    Freitas, Alex A.
    INTELLIGENT DATA ANALYSIS, 2010, 14 (03) : 333 - 354
  • [3] Learning Selection Strategies for Evolutionary Algorithms
    Lourenco, Nuno
    Pereira, Francisco
    Costa, Ernesto
    ARTIFICIAL EVOLUTION, EA 2013, 2014, 8752 : 197 - 208
  • [4] Bargaining strategies designed by evolutionary algorithms
    Jin, Nanlin
    Tsang, Edward
    APPLIED SOFT COMPUTING, 2011, 11 (08) : 4701 - 4712
  • [5] Parallelization Strategies for Evolutionary Algorithms for MINLP
    Schlueter, Martin
    Munetomo, Masaharu
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 635 - 641
  • [6] On the design adaptive control strategies for evolutionary algorithms
    Maturana, Jorge
    Saubion, Frederic
    ARTIFICIAL EVOLUTION, 2008, 4926 : 303 - 315
  • [7] On replacement strategies in steady state evolutionary algorithms
    Smith, Jim
    EVOLUTIONARY COMPUTATION, 2007, 15 (01) : 29 - 59
  • [8] Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms
    Runarsson, Thomas Philip
    Merelo-Guervos, Juan J.
    NICSO 2010: NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION, 2010, 284 : 255 - +
  • [9] Termination Detection Strategies in Evolutionary Algorithms: A Survey
    Liu, Yanfeng
    Zhou, Aimin
    Zhang, Hu
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1063 - 1070
  • [10] CALIBRATING THE EVOLUTIONARY CLOCK
    BROOKE, M
    NEW SCIENTIST, 1993, 139 (1888) : 16 - 16