Calibrating strategies for evolutionary algorithms

被引:3
|
作者
Montero, Elizabeth [1 ]
Riff, Maria-Cristina [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Comp Sci, Valparaiso, Chile
关键词
D O I
10.1109/CEC.2007.4424498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The control of parameters during the execution of evolutionary algorithms is an open research area. In this paper, we propose new parameter control strategies for evolutionary approaches, based on reinforcement learning ideas. Our approach provides efficient and low cost adaptive techniques for parameter control. Moreover, it is a general method, thus it could be applied to any evolutionary approach having more than one operator. We contrast our results with tuning techniques and HAEA a random parameter control.
引用
收藏
页码:394 / 399
页数:6
相关论文
共 50 条
  • [41] Evolutionary Algorithms Designer - Graphical way of implementing Evolutionary Algorithms
    Macej, P
    INTELLIGENT TECHNOLOGIES - THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT TECHNOLOGIES, 2002, 76 : 342 - 343
  • [42] Optimization of Operation and Control Strategies for Battery Energy Storage Systems by Evolutionary Algorithms
    Mueller, Jan
    Maerz, Matthias
    Mauser, Ingo
    Schmeck, Hartmut
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT I, 2016, 9597 : 507 - 522
  • [43] Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms
    Drugan, Madalina M.
    Thierens, Dirk
    EVOLUTIONARY INTELLIGENCE, 2010, 3 (02) : 79 - 101
  • [44] Application of Evolutionary and Hybrid Algorithms to Optimize Investments Strategies in Large Power Plants
    Sakowicz, Bartosz
    Anders, George J.
    Kaminski, Marek
    Napieralski, Andrzej
    2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, : 577 - 583
  • [45] A new multi-period investment strategies method based on evolutionary algorithms
    Anton Aguilar-Rivera
    Manuel Valenzuela-Rendón
    Neural Computing and Applications, 2019, 31 : 923 - 937
  • [46] Genetic algorithms for calibrating water quality models
    Mulligan, AE
    Brown, LC
    JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1998, 124 (03): : 202 - 211
  • [47] Calibrating Dynamic Factor Models with Genetic Algorithms
    Della Marra, Fabio
    ARTIFICIAL LIFE AND EVOLUTIONARY COMPUTATION, WIVACE 2017, 2018, 830 : 197 - 211
  • [48] An introduction to evolutionary computation and evolutionary algorithms
    Cartwright, HM
    APPLICATIONS OF EVOLUTIONARY COMPUTATION IN CHEMISTRY, 2004, 110 : 1 - 32
  • [49] Suitability of evolutionary algorithms for evolutionary testing
    Wegener, J
    Baresel, A
    Sthamer, H
    26TH ANNUAL INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, PROCEEDINGS, 2002, : 287 - 289
  • [50] Calibrating the Tree of Life: fossils, molecules and evolutionary timescales
    Forest, Felix
    ANNALS OF BOTANY, 2009, 104 (05) : 789 - 794