Learning Selection Strategies for Evolutionary Algorithms

被引:0
|
作者
Lourenco, Nuno [1 ]
Pereira, Francisco [1 ]
Costa, Ernesto [1 ]
机构
[1] Univ Coimbra, CISUC, Dept Informat Engn, P-3030 Coimbra, Portugal
来源
关键词
D O I
10.1007/978-3-319-11683-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-Heuristics is a recent area of research concerned with the automatic design of algorithms. In this paper we propose a grammar-based hyper-heuristic to automate the design of an Evolutionary Algorithm component, namely the parent selection mechanism. More precisely, we present a grammar that defines the number of individuals that should be selected, and how they should be chosen in order to adjust the selective pressure. Knapsack Problems are used to assess the capacity to evolve selection strategies. The results obtained show that the proposed approach is able to evolve general selection methods that are competitive with the ones usually described in the literature.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [1] Learning hybridization strategies in evolutionary algorithms
    LaTorre, Antonio
    Pena, Jose-Maria
    Muelas, Santiago
    Freitas, Alex A.
    INTELLIGENT DATA ANALYSIS, 2010, 14 (03) : 333 - 354
  • [2] Impact of Evolutionary Community Detection Algorithms for Edge Selection Strategies
    Barsocchi, Paolo
    Chessa, Stefano
    Foschini, Luca
    Belli, Dimitri
    Girolami, Michele
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [3] Meta-Learning and Model Selection in Multiobjective Evolutionary Algorithms
    Pilat, Martin
    Neruda, Roman
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 433 - 438
  • [4] GROUP SELECTION IN EVOLUTIONARY ALGORITHMS
    Perini, Alpar
    KEPT 2009: KNOWLEDGE ENGINEERING PRINCIPLES AND TECHNIQUES, 2009, : 175 - 179
  • [5] On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining
    Cano, JR
    Herrera, F
    Lozano, M
    APPLIED SOFT COMPUTING, 2006, 6 (03) : 323 - 332
  • [6] Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms
    Drugan, Madalina M.
    Thierens, Dirk
    EVOLUTIONARY INTELLIGENCE, 2010, 3 (02) : 79 - 101
  • [7] Selection schemes in evolutionary algorithms
    Wieczorek, W
    Czech, ZJ
    INTELLIGENT INFORMATION SYSTEMS 2002, PROCEEDINGS, 2002, 17 : 185 - 194
  • [8] Autonomous Selection in Evolutionary Algorithms
    Eiben, A. E.
    Schoenauer, Marc
    van Krevelen, D. W. F.
    Hobbelman, M. C.
    ten Hagen, M. A.
    Schip, R. C. van Het
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1506 - 1506
  • [9] Selection mechanisms in evolutionary algorithms
    Esquivel, Susana C.
    Leiva, Hector Ariel
    Gallard, Raul H.
    Fundamenta Informaticae, 1998, 35 (1-4): : 17 - 33
  • [10] Tuning Reinforcement Learning Parameters for Cluster Selection to Enhance Evolutionary Algorithms
    Villavicencio, Nathan
    Groves, Michael N.
    ACS ENGINEERING AU, 2024, 4 (04): : 381 - 393