Learning Selection Strategies for Evolutionary Algorithms

被引:0
|
作者
Lourenco, Nuno [1 ]
Pereira, Francisco [1 ]
Costa, Ernesto [1 ]
机构
[1] Univ Coimbra, CISUC, Dept Informat Engn, P-3030 Coimbra, Portugal
来源
关键词
D O I
10.1007/978-3-319-11683-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-Heuristics is a recent area of research concerned with the automatic design of algorithms. In this paper we propose a grammar-based hyper-heuristic to automate the design of an Evolutionary Algorithm component, namely the parent selection mechanism. More precisely, we present a grammar that defines the number of individuals that should be selected, and how they should be chosen in order to adjust the selective pressure. Knapsack Problems are used to assess the capacity to evolve selection strategies. The results obtained show that the proposed approach is able to evolve general selection methods that are competitive with the ones usually described in the literature.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [41] On replacement strategies in steady state evolutionary algorithms
    Smith, Jim
    EVOLUTIONARY COMPUTATION, 2007, 15 (01) : 29 - 59
  • [42] Adaptive evolutionary algorithms for portfolio selection problems
    Filograsso, Gianni
    di Tollo, Giacomo
    COMPUTATIONAL MANAGEMENT SCIENCE, 2023, 20 (01)
  • [43] Evolutionary negative selection algorithms for anomaly detection
    Luo, WJ
    Wang, JY
    Wang, XF
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 440 - 445
  • [44] A diversity preserving selection in multiobjective evolutionary algorithms
    Chang Wook Ahn
    R. S. Ramakrishna
    Applied Intelligence, 2010, 32 : 231 - 248
  • [45] On-the-fly calibrating strategies for evolutionary algorithms
    Montero, Elizabeth
    Riff, Maria-Cristina
    INFORMATION SCIENCES, 2011, 181 (03) : 552 - 566
  • [46] Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms
    Runarsson, Thomas Philip
    Merelo-Guervos, Juan J.
    NICSO 2010: NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION, 2010, 284 : 255 - +
  • [47] Termination Detection Strategies in Evolutionary Algorithms: A Survey
    Liu, Yanfeng
    Zhou, Aimin
    Zhang, Hu
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1063 - 1070
  • [48] Fuzzy Algorithms for Selection of Bidding Strategies
    Ilieva, Galina
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2010, 10 (01) : 25 - 36
  • [49] Evolutionary learning algorithms for neural network
    2000, Inst Sci Tech Infor China (10):
  • [50] Learning fuzzy classifiers with evolutionary algorithms
    Beretta, ML
    Tettamanzi, AGB
    SOFT COMPUTING APPLICATIONS, 2003, : 1 - 10