Variable selection in multi-block regression

被引:53
|
作者
Biancolillo, Alessandra [1 ,2 ]
Liland, Kristian Hovde [1 ,3 ]
Mage, Ingrid [1 ]
Naes, Tormod [1 ,2 ]
Bro, Rasmus [2 ]
机构
[1] Nofima AS, Osloveien 1,POB 210, N-1431 As, Norway
[2] Univ Copenhagen, Fac Life Sci, Dept Food Sci, Qual & Technol, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
[3] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, POB 5003, N-1432 As, Norway
关键词
Variable selection; Multi-block; SO-PLS; MB-PLS; Raman; Sensory; PARTIAL LEAST-SQUARES; NEAR-INFRARED SPECTROSCOPY; MODELS; PLS;
D O I
10.1016/j.chemolab.2016.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of the present paper is to propose and discuss different procedures for performing variable selection in a multi-block regression context. In particular, the focus is on two multi-block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression. A small simulation study for regular PLS regression was conducted in order to select the most promising methods to investigate further in the multi-block context. The combinations of three variable selection methods with MB-PLS and SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) Selectivity Ratio (SR) and forward selection. In this paper we focus on both prediction ability and interpretation. The different approaches are tested on three types of data: one sensory data set, one spectroscopic (Raman) data set and a number of simulated multi-block data sets. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 101
页数:13
相关论文
共 50 条
  • [41] MULTI-BLOCK CHAINING-BASED AUTHENTICATION MODE
    Huang Yuhua Hu Aiqun Zhong Ziguo Research Center of Information Security Southeast University Nanjing China College of Info Science Technology Nanjing University of Aeronautics Astronautics Nanjing China
    Journal of Electronics, 2006, (04) : 564 - 568
  • [42] Penalized variable selection in multi-parameter regression survival modeling
    Jaouimaa, Fatima-Zahra
    Do Ha, Il
    Burke, Kevin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (12) : 2455 - 2471
  • [43] A multi-block method for solving incompressible viscous flows
    Callitsis, T
    Bergeles, G
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 942 - 947
  • [44] Parallelization of a multi-block Navier-Stokes solver
    Rautaheimo, P
    Salminen, E
    Siikonen, T
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 1045 - 1051
  • [45] A supramolecular multi-block copolymer with a high propensity for alternation
    Park, Taiho
    Zimmerman, Steven C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (43) : 13986 - 13987
  • [46] Face detection based on multi-block LBP representation
    Zhang, Lun
    Chu, Rufeng
    Xiang, Shiming
    Liao, Shengcai
    Li, Stan Z.
    ADVANCES IN BIOMETRICS, PROCEEDINGS, 2007, 4642 : 11 - +
  • [47] Multi-block copolymer dispersions through polyurethane macroiniferters
    Tharanikkarasu, K
    Kim, BK
    POLYMER BULLETIN, 1998, 40 (06) : 675 - 681
  • [48] Distance matrix of a multi-block graph: determinant and inverse
    Das, Joyentanuj
    Mohanty, Sumit
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 3994 - 4022
  • [49] Extension of Kershaw diffusion scheme on multi-block grids
    Zeng, Qinghong
    Pei, Wenbing
    Cheng, Juan
    Yong, Heng
    Jisuan Wuli/Chinese Journal of Computational Physics, 2011, 28 (05): : 641 - 648
  • [50] Variable selection in expectile regression
    Zhao, Jun
    Zhang, Yi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (07) : 1731 - 1746