Variable selection in expectile regression

被引:23
|
作者
Zhao, Jun [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Expectile regression; SCAD; statistical inference; variable selection; 62J99; 62F12; 62F25; QUANTILE REGRESSION; ORACLE PROPERTIES; LASSO;
D O I
10.1080/03610926.2017.1324989
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider penalized linear expectile regression using SCAD penalty function. We prove that our estimator has not only root n consistency but also oracle properties. In order to perform a better statistical inference, we make a correction of our estimator. The performance of our proposed methods are investigated through simulation studies.
引用
收藏
页码:1731 / 1746
页数:16
相关论文
共 50 条
  • [1] Model selection in semiparametric expectile regression
    Spiegel, Elmar
    Sobotka, Fabian
    Kneib, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3008 - 3038
  • [2] Nonparametric Expectile Regression Meets Deep Neural Networks: A Robust Nonlinear Variable Selection method
    Yang, Rui
    Song, Yunquan
    Statistical Analysis and Data Mining, 2024, 17 (06)
  • [3] Expectile regression forest: A new nonparametric expectile regression model
    Cai, Chao
    Dong, Haotian
    Wang, Xinyi
    EXPERT SYSTEMS, 2023, 40 (01)
  • [4] Geoadditive expectile regression
    Sobotka, Fabian
    Kneib, Thomas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 755 - 767
  • [5] Variable selection and debiased estimation for single-index expectile model
    Jiang, Rong
    Peng, Yexun
    Deng, Yufei
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (04) : 658 - 673
  • [6] Local polynomial expectile regression
    C. Adam
    I. Gijbels
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 341 - 378
  • [7] Thekth power expectile regression
    Jiang, Yingying
    Lin, Fuming
    Zhou, Yong
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (01) : 83 - 113
  • [8] The kth power expectile regression
    Yingying Jiang
    Fuming Lin
    Yong Zhou
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 83 - 113
  • [9] Group penalized expectile regression
    Ouhourane, Mohamed
    Oualkacha, Karim
    Yang, Archer Yi
    STATISTICAL METHODS AND APPLICATIONS, 2024,
  • [10] Local polynomial expectile regression
    Adam, C.
    Gijbels, I.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (02) : 341 - 378