Lyapunov exponents on the orbit space

被引:0
|
作者
Rumberger, M [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
关键词
Lyapunov exponent; orbit space; Lie group; equivariant; dynamical systems; orbital stability; Hilbert basis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dynamical system equivariant with respect to a compact symmetry group induces a system on the orbit space. This (reduced) system inherits many important features of the given one, but the drifts along the group orbits disappear. Using invariant theory the orbit space along with the reduced system can be embedded into a real vector space. We consider the Lyapunov exponents of the reduced system, and prove formulas for these in terms of the Lyapunov exponents of the given system. These formulas enable us to make predictions about the latter using only the Lyapunov exponents of the reduced system.
引用
收藏
页码:91 / 113
页数:23
相关论文
共 50 条
  • [31] Time series prediction using Lyapunov Exponents in embedding phase space
    Zhang, J
    Man, KF
    Ke, JY
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1744 - 1749
  • [32] Lyapunov exponents, holomorphic flat bundles and de Rham moduli space
    Matteo Costantini
    Israel Journal of Mathematics, 2020, 240 : 345 - 415
  • [33] Time series prediction using Lyapunov exponents in embedding phase space
    City Univ of Hong Kong, Kowloon, Hong Kong
    International Conference on Signal Processing Proceedings, ICSP, 1998, 1 : 221 - 224
  • [34] Baire classification of majorants and minorants of Lyapunov exponents on the space of regular systems
    A. N. Vetokhin
    Differential Equations, 2014, 50 : 1555 - 1556
  • [35] Baire classification of majorants and minorants of Lyapunov exponents on the space of regular systems
    Vetokhin, A. N.
    DIFFERENTIAL EQUATIONS, 2014, 50 (11) : 1555 - 1556
  • [36] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310
  • [37] Quantum Lyapunov Exponents
    P. Falsaperla
    G. Fonte
    G. Salesi
    Foundations of Physics, 2002, 32 : 267 - 294
  • [38] Asymptotic stability of structural systems based on lyapunov exponents and moment Lyapunov exponents
    Doyle, MM
    Namachchivaya, NS
    VanRoessel, HJ
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (04) : 681 - 692
  • [39] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109
  • [40] Chaos, complexity, and short time Lyapunov exponents: Two alternative characterisations of chaotic orbit segments
    Kandrup, HE
    Eckstein, BL
    Bradley, BO
    ASTRONOMY & ASTROPHYSICS, 1997, 320 (01) : 65 - 73