Lyapunov exponents on the orbit space

被引:0
|
作者
Rumberger, M [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
关键词
Lyapunov exponent; orbit space; Lie group; equivariant; dynamical systems; orbital stability; Hilbert basis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dynamical system equivariant with respect to a compact symmetry group induces a system on the orbit space. This (reduced) system inherits many important features of the given one, but the drifts along the group orbits disappear. Using invariant theory the orbit space along with the reduced system can be embedded into a real vector space. We consider the Lyapunov exponents of the reduced system, and prove formulas for these in terms of the Lyapunov exponents of the given system. These formulas enable us to make predictions about the latter using only the Lyapunov exponents of the reduced system.
引用
收藏
页码:91 / 113
页数:23
相关论文
共 50 条
  • [11] Forecasting available parking space with largest Lyapunov exponents method
    Ji Yan-jie
    Tang Dou-nan
    Guo Wei-hong
    Blythe, T. Phil
    Wang Wei
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (04) : 1624 - 1632
  • [12] Forecasting available parking space with largest Lyapunov exponents method
    Yan-jie Ji
    Dou-nan Tang
    Wei-hong Guo
    Phil T. Blythe
    Wei Wang
    Journal of Central South University, 2014, 21 : 1624 - 1632
  • [13] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [14] STABILITY OF LYAPUNOV EXPONENTS
    LEDRAPPIER, F
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 469 - 484
  • [15] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [16] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [17] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [18] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672
  • [19] INTEGRABILITY AND LYAPUNOV EXPONENTS
    Hammerlindl, Andy
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 107 - 122
  • [20] Flexibility of Lyapunov exponents
    Bochi, J.
    Katok, A.
    Hertz, F. Rodriguez
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 554 - 591