Prolate and oblate chiral liquid crystal spheroids

被引:33
|
作者
Sadati, Monirosadat [1 ,2 ]
Martinez-Gonzalez, Jose A. [1 ,3 ]
Zhou, Ye [1 ]
Qazvini, Nader Taheri [1 ,2 ]
Kurtenbach, Khia [1 ]
Li, Xiao [1 ,4 ]
Bukusoglu, Emre [5 ]
Zhang, Rui [1 ]
Abbott, Nicholas L. [6 ]
Pablo Hernandez-Ortiz, Juan [7 ]
de Pablo, Juan J. [1 ,8 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ South Carolina, Dept Chem Engn, Swearingen Engn Ctr, Columbia, SC 29208 USA
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, Av Parque Chapultepec 1570, San Luis Potosi 78295, San Luis Potosi, Mexico
[4] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[5] Middle East Tech Univ, Chem Engn Dept, TR-06800 Ankara, Turkey
[6] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[7] Univ Nacl Colombia, Fac Minas, Dept Mat & Minerales, Calle 75 79A-51,Bloque M17, Medellin, Colombia
[8] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 28期
基金
美国国家科学基金会;
关键词
BLUE-PHASE; COLOR CHANGES; TRANSITIONS; DROPLETS;
D O I
10.1126/sciadv.aba6728
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Prolate and oblate spheroidal acoustic infinite elements
    Burnett, DS
    Holford, RL
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 158 (1-2) : 117 - 141
  • [42] Oblate to prolate transition of a vesicle in shear flow
    Maximilien Degonville
    Gwenn Boedec
    Marc Leonetti
    The European Physical Journal E, 2019, 42
  • [43] Mixing of prolate and oblate shapes by tunneling in γ direction
    A. Ya. Dzyublik
    V. V. Utyuzh
    Physics of Atomic Nuclei, 2009, 72 : 950 - 959
  • [44] The prolate and oblate spheroid perfectly matched layers
    Xiao, Y
    Lu, YL
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 669 - 672
  • [45] Oscillating flow over oblate spheroids
    Alassar, RS
    Badr, HM
    ACTA MECHANICA, 1999, 137 (3-4) : 237 - 254
  • [46] Oscillating flow over oblate spheroids
    R. S. Alassar
    H. M. Badr
    Acta Mechanica, 1999, 137 : 237 - 254
  • [47] Production of Oblate Spheroids of Ferrites.
    Beck, Ernst
    1600, (25):
  • [48] The orbital precession around oblate spheroids
    Montanus, J. M. C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [49] Instabilities of a family of oblate stellar spheroids
    Sellwood, JA
    Valluri, M
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 287 (01) : 124 - 136
  • [50] Oscillating flow over oblate spheroids
    Alassar, R.S.
    Badr, H.M.
    Acta Mechanica, 1999, 137 (03): : 237 - 254