Prolate and oblate chiral liquid crystal spheroids

被引:33
|
作者
Sadati, Monirosadat [1 ,2 ]
Martinez-Gonzalez, Jose A. [1 ,3 ]
Zhou, Ye [1 ]
Qazvini, Nader Taheri [1 ,2 ]
Kurtenbach, Khia [1 ]
Li, Xiao [1 ,4 ]
Bukusoglu, Emre [5 ]
Zhang, Rui [1 ]
Abbott, Nicholas L. [6 ]
Pablo Hernandez-Ortiz, Juan [7 ]
de Pablo, Juan J. [1 ,8 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ South Carolina, Dept Chem Engn, Swearingen Engn Ctr, Columbia, SC 29208 USA
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, Av Parque Chapultepec 1570, San Luis Potosi 78295, San Luis Potosi, Mexico
[4] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[5] Middle East Tech Univ, Chem Engn Dept, TR-06800 Ankara, Turkey
[6] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[7] Univ Nacl Colombia, Fac Minas, Dept Mat & Minerales, Calle 75 79A-51,Bloque M17, Medellin, Colombia
[8] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 28期
基金
美国国家科学基金会;
关键词
BLUE-PHASE; COLOR CHANGES; TRANSITIONS; DROPLETS;
D O I
10.1126/sciadv.aba6728
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Inertial migration of neutrally buoyant prolate and oblate spheroids in plane Poiseuille flow using dissipative particle dynamics simulations
    Huang, Yuanding
    Marson, Ryan L.
    Larson, Ronald G.
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 162 (178-185) : 178 - 185
  • [32] A code to evaluate prolate and oblate spheroidal harmonics
    Gil, A
    Segura, J
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) : 267 - 278
  • [33] Astigmatic corneas - Oblate and prolate meridians - Reply
    Koch, DD
    Holladay, JT
    Budak, K
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2000, 26 (03): : 308 - 308
  • [34] Mixing of prolate and oblate shapes by tunneling in γ direction
    Dzyublik, A. Ya.
    Utyuzh, V. V.
    PHYSICS OF ATOMIC NUCLEI, 2009, 72 (06) : 950 - 959
  • [35] Size and shape characterization of oblate and prolate particles
    Pabst, Willi
    Berthold, Christoph
    Gregorova, Eva
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 1759 - 1762
  • [36] Electric conductivity of metallic oblate or prolate nanoparticles
    Grigorchuk, N. I.
    Tomchuk, P. M.
    LOW TEMPERATURE PHYSICS, 2007, 33 (04) : 341 - 349
  • [37] PROLATE-OBLATE TRANSITION IN ND ISOTOPES
    GIZON, J
    GIZON, A
    DIAMOND, RM
    STEPHENS, FS
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1978, 4 (07) : L171 - L175
  • [38] Electromagnetic characteristics of systems of prolate and oblate ellipsoids
    Karimi, Pouyan
    Amiri-Hezaveh, Amirhossein
    Ostoja-Starzewski, Martin
    Jin, Jian-Ming
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (18)
  • [39] Oblate to prolate transition of a vesicle in shear flow
    Degonville, Maximilien
    Boedec, Gwenn
    Leonetti, Marc
    EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (09):
  • [40] Fabrication and Modeling of Truncated Oblate and Prolate Microresonators
    Zervas, Michalis N.
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XV, 2013, 8600