Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor

被引:6
|
作者
Hunnestad, K. A. [1 ]
Hatzoglou, C. [1 ]
Khalid, Z. M. [1 ]
Vullum, P. E. [2 ,3 ]
Yan, Z. [4 ,5 ]
Bourret, E. [5 ]
van Helvoort, A. T. J. [2 ]
Selbach, S. M. [1 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
[3] SINTEF Ind, N-7034 Trondheim, Norway
[4] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
基金
欧洲研究理事会;
关键词
PROBE TOMOGRAPHY; DEFECTS;
D O I
10.1038/s41467-022-32189-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The physical properties of semiconductors are controlled by chemical doping. In oxide semiconductors, small variations in the density of dopant atoms can completely change the local electric and magnetic responses caused by their strongly correlated electrons. In lightly doped systems, however, such variations are difficult to determine as quantitative 3D imaging of individual dopant atoms is a major challenge. We apply atom probe tomography to resolve the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O-3 with a nominal Ti concentration of 0.04 at. %, map their 3D lattice positions, and quantify spatial variations. Our work enables atomic-level 3D studies of structure-property relations in lightly doped complex oxides, which is crucial to understand and control emergent dopant-driven quantum phenomena. Small variations in the density of dopants change the physical properties of complex oxides. Here, the authors resolve doping levels in three dimension, imaging the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O-3.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Atomic-scale imaging of carbon nanofibre growth
    Helveg, S
    López-Cartes, C
    Sehested, J
    Hansen, PL
    Clausen, BS
    Rostrup-Nielsen, JR
    Abild-Pedersen, F
    Norskov, JK
    NATURE, 2004, 427 (6973) : 426 - 429
  • [42] ATOMIC-SCALE IMAGING WITH THE SCANNING TUNNELING MICROSCOPE
    HAMERS, RJ
    MRS BULLETIN, 1991, 16 (03) : 22 - 26
  • [43] Direct atomic-scale imaging of ceramic interfaces
    Dickey, EC
    Fan, X
    Pennycock, SJ
    ACTA MATERIALIA, 1999, 47 (15-16) : 4061 - 4068
  • [44] Atomic-scale imaging of ultrafast materials dynamics
    Flannigan, David J.
    Lindenberg, Aaron M.
    MRS BULLETIN, 2018, 43 (07) : 485 - 490
  • [45] Atomic-scale imaging of carbon nanofibre growth
    Stig Helveg
    Carlos López-Cartes
    Jens Sehested
    Poul L. Hansen
    Bjerne S. Clausen
    Jens R. Rostrup-Nielsen
    Frank Abild-Pedersen
    Jens K. Nørskov
    Nature, 2004, 427 : 426 - 429
  • [46] Atomic-scale imaging of ultrafast materials dynamics
    David J. Flannigan
    Aaron M. Lindenberg
    MRS Bulletin, 2018, 43 : 485 - 490
  • [47] Direct atomic-scale imaging of ceramic interfaces
    Dickey, E.C.
    Fan, X.
    Pennycook, S.J.
    Acta Materialia, 1999, 47 (15): : 4061 - 4068
  • [48] SCANNING CATHODOLUMINESCENCE MICROSCOPY - A UNIQUE APPROACH TO ATOMIC-SCALE CHARACTERIZATION OF HETEROINTERFACES AND IMAGING OF SEMICONDUCTOR INHOMOGENEITIES
    CHRISTEN, J
    GRUNDMANN, M
    BIMBERG, D
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (04): : 2358 - 2368
  • [49] Depth-dependent imaging of individual dopant atoms in silicon
    Voyles, PM
    Muller, DA
    Kirkland, EJ
    MICROSCOPY AND MICROANALYSIS, 2004, 10 (02) : 291 - 300
  • [50] Atomic-scale imaging of B/Si(111)√3√3 surface by noncontact atomic force microscopy
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
    Japanese Journal of Applied Physics, 2008, 47 (10 PART 2): : 8218 - 8220