Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor

被引:6
|
作者
Hunnestad, K. A. [1 ]
Hatzoglou, C. [1 ]
Khalid, Z. M. [1 ]
Vullum, P. E. [2 ,3 ]
Yan, Z. [4 ,5 ]
Bourret, E. [5 ]
van Helvoort, A. T. J. [2 ]
Selbach, S. M. [1 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
[3] SINTEF Ind, N-7034 Trondheim, Norway
[4] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
基金
欧洲研究理事会;
关键词
PROBE TOMOGRAPHY; DEFECTS;
D O I
10.1038/s41467-022-32189-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The physical properties of semiconductors are controlled by chemical doping. In oxide semiconductors, small variations in the density of dopant atoms can completely change the local electric and magnetic responses caused by their strongly correlated electrons. In lightly doped systems, however, such variations are difficult to determine as quantitative 3D imaging of individual dopant atoms is a major challenge. We apply atom probe tomography to resolve the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O-3 with a nominal Ti concentration of 0.04 at. %, map their 3D lattice positions, and quantify spatial variations. Our work enables atomic-level 3D studies of structure-property relations in lightly doped complex oxides, which is crucial to understand and control emergent dopant-driven quantum phenomena. Small variations in the density of dopants change the physical properties of complex oxides. Here, the authors resolve doping levels in three dimension, imaging the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O-3.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Imaging "Invisible" Dopant Atoms in Semiconductor Nanocrystals
    Gunawan, Aloysius A.
    Mkhoyan, K. Andre
    Wills, Andrew W.
    Thomas, Malcolm G.
    Norris, David J.
    NANO LETTERS, 2011, 11 (12) : 5553 - 5557
  • [22] Atomic-scale investigation of microstructures by 3D atom-probe microscopy
    Blavette, D
    Cadel, E
    Chambreland, S
    Deconihout, B
    Menand, A
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2002, 99 (12): : 1111 - 1117
  • [23] Atomic-scale studies of hydrogenated semiconductor surfaces
    Mayne, AJ
    Riedel, D
    Comtet, G
    Dujardin, G
    PROGRESS IN SURFACE SCIENCE, 2006, 81 (01) : 1 - 51
  • [24] Atomic-scale imaging of polypeptoid crystals
    Jiang, Xi
    Greer, Douglas
    Prendergast, David
    Zuckermann, Ronald
    Balsara, Nitash
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [25] Atomic-scale 3D reconstruction of antiphase boundaries in GaP on (001) silicon by STEM
    Belz, Juergen
    Beyer, Andreas
    Volz, Kerstin
    MICRON, 2018, 114 : 32 - 41
  • [26] 3D atomic-scale growth characteristics of {10-12} twin in magnesium
    Wan, Xin
    Zhang, Jing
    Mo, Xueyan
    Pan, Fusheng
    JOURNAL OF MAGNESIUM AND ALLOYS, 2019, 7 (03) : 474 - 486
  • [27] Atomic-Scale Imaging of Condensed Counterions
    Seidler, Morgan
    Yu, Tianyi
    Luo, Xubo
    Prendergast, David
    Zuckermann, Ronald N.
    Jiang, Xi
    Balsara, Nitash P.
    MACROMOLECULES, 2024, 57 (21) : 10016 - 10022
  • [28] 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence
    Morsdorf, L.
    Tasan, C. C.
    Ponge, D.
    Raabe, D.
    ACTA MATERIALIA, 2015, 95 : 366 - 377
  • [29] Three-Dimensional Imaging of Individual Dopant Atoms in SrTiO3
    Hwang, Jinwoo
    Zhang, Jack Y.
    D'Alfonso, Adrian J.
    Allen, Leslie J.
    Stemmer, Susanne
    PHYSICAL REVIEW LETTERS, 2013, 111 (26)
  • [30] Imaging of atomic-scale structure of oxide surfaces and adsorbed molecules by noncontact atomic force microscopy
    Fukui, K
    Onishi, H
    Iwasawa, Y
    APPLIED SURFACE SCIENCE, 1999, 140 (3-4) : 259 - 264