On the distribution of inverses modulo n

被引:3
|
作者
Zhang, WP [1 ]
机构
[1] UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n > 2 be an integer, and for each integer 0 < a < n with (a, n) = 1, define (a) over bar by the congruence a (a) over bar = 1 (mod n) and 0 < (a) over bar < n. The main purpose of this paper is to study the distribution behaviour of \a - (a) over bar\, and prove that for any fixed positive number 0 < delta less than or equal to 1, lim # {a: 1 less than or equal to a less than or equal to n - 1, (a, n) = 1, \a - (a) over bar\ < delta n}/phi(n) = delta(2 - delta), n --> infinity where phi(n) is the Euler function, and # {...} denotes the number of elements of the set {...}. (C) 1996 Academic Press, Inc.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [1] On the uniform distribution of inverses modulo n
    Beck J.
    Khan M.R.
    Periodica Mathematica Hungarica, 2002, 44 (2) : 147 - 155
  • [2] On the distribution of inverses modulo p (II)
    Zhang, WP
    ACTA ARITHMETICA, 2001, 100 (02) : 189 - 194
  • [3] The distribution of patterns of inverses modulo a prime
    Cobeli, CI
    Gonek, SM
    Zaharescu, A
    JOURNAL OF NUMBER THEORY, 2003, 101 (02) : 209 - 222
  • [4] The distribution of inverses modulo a prime in short intervals
    Gonek, SM
    Krishnaswami, GS
    Sondhi, VL
    ACTA ARITHMETICA, 2002, 102 (04) : 315 - 322
  • [5] On matrix inverses modulo a subspace
    Carriegos, MV
    Garda-Planas, MI
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 : 229 - 237
  • [6] On the distribution modulo 1 of the values of F(n)+ασ(n)
    De Koninck, JM
    Kátai, I
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 121 - 128
  • [7] Generalized inverses modulo H in semigroups and rings
    Mary, Xavier
    Patricio, Pedro
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (08): : 1130 - 1135
  • [8] Zeckendorf representation of multiplicative inverses modulo a Fibonacci number
    Alecci, Gessica
    Murru, Nadir
    Sanna, Carlo
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 1 - 9
  • [9] On calculating multiplicative inverses modulo 2m
    Arazi, Ortal
    Qi, Hairong
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (10) : 1435 - 1438
  • [10] Zeckendorf representation of multiplicative inverses modulo a Fibonacci number
    Gessica Alecci
    Nadir Murru
    Carlo Sanna
    Monatshefte für Mathematik, 2023, 201 : 1 - 9