On the distribution of inverses modulo n

被引:3
|
作者
Zhang, WP [1 ]
机构
[1] UNIV GEORGIA,DEPT MATH,ATHENS,GA 30602
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n > 2 be an integer, and for each integer 0 < a < n with (a, n) = 1, define (a) over bar by the congruence a (a) over bar = 1 (mod n) and 0 < (a) over bar < n. The main purpose of this paper is to study the distribution behaviour of \a - (a) over bar\, and prove that for any fixed positive number 0 < delta less than or equal to 1, lim # {a: 1 less than or equal to a less than or equal to n - 1, (a, n) = 1, \a - (a) over bar\ < delta n}/phi(n) = delta(2 - delta), n --> infinity where phi(n) is the Euler function, and # {...} denotes the number of elements of the set {...}. (C) 1996 Academic Press, Inc.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [31] On the distribution of (CnDn) modulo p
    Moshe, Yossi
    ACTA ARITHMETICA, 2007, 127 (03) : 249 - 271
  • [32] Distribution of residues modulo p
    Gun, S.
    Luca, Florian
    Rath, P.
    Sahu, B.
    Thangadurai, R.
    ACTA ARITHMETICA, 2007, 129 (04) : 325 - 333
  • [33] The distribution of αp modulo one
    Matomaki, Kaisa
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 : 267 - 283
  • [34] On the Multiplicative Order of a(n) Modulo n
    Chappelon, Jonathan
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (02)
  • [35] On the distribution of αpγ + β modulo one
    Dunn, Alexander
    JOURNAL OF NUMBER THEORY, 2017, 176 : 67 - 75
  • [36] DISTRIBUTION OF SEQUENCES MODULO I
    ZAME, A
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04): : 697 - &
  • [37] The distribution of powers modulo q
    Qi, Jinyun
    Xu, Zhefeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 387 - 408
  • [38] DISTRIBUTION OF SEQUENCES MODULO ONE
    CATER, FS
    VANDENEY.C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A52 - &
  • [39] On the distribution of αp modulo one
    Jia, CH
    NUMBER THEORETIC METHODS: FUTURE TRENDS, 2002, 8 : 151 - 157
  • [40] Verified Newton-Raphson Iteration for Multiplicative Inverses Modulo Powers of Any Base
    Walther, Christoph
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (01):