Semantic Annotation of Land Cover Remote Sensing Images Using Fuzzy CNN

被引:3
|
作者
Saranya, K. [1 ]
Bhuvaneswari, K. Selva [2 ]
机构
[1] Univ Coll Engn Kanchipuram, Dept Elect & Commun Engn, Kancheepuram 631552, India
[2] Univ Coll Engn Kanchipuram, Dept Comp Sci & Engn, Kancheepuram 631552, India
来源
关键词
Land cover; high resolution; annotation; CNN; fuzzy logic; CLASSIFICATION; RETRIEVAL; ALGORITHM;
D O I
10.32604/iasc.2022.023149
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel fuzzy logic based Convolution Neural Network intelligent classifier for accurate image classification. The proposed approach employs a semantic class label model that classifies the input land cover images into a set of semantic categories and classes depending on the content. The intelligent feature selection algorithm selects the prominent attributes from the given data set using weighted attribute functions and uses fuzzy logic to build the rules based on the membership values. To annotate remote sensing images, the CNN method effectively creates semantics and categorises images. The decision manager then integrates the fuzzy logic rules with the CNN algorithm to achieve accurate classification. The proposed approach achieves a classification accuracy of 90.46% when used with various training and test images, and the three class labels for vegetation (84%), buildings (90%), and roads (90%) provide a higher classification accuracy than other existing algorithms. On the basis of true positive rate, false positive rate, and accuracy of picture classification, the suggested approach outperforms the existing methods.
引用
收藏
页码:399 / 414
页数:16
相关论文
共 50 条
  • [21] A new fusion technique of remote sensing images for land use/cover
    Wu, LX
    Sun, B
    Zhou, SL
    Huang, SE
    Zhao, QG
    PEDOSPHERE, 2004, 14 (02) : 187 - 194
  • [22] Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data
    Shi, Yan
    Qi, Zhixin
    Liu, Xiaoping
    Niu, Ning
    Zhang, Hui
    REMOTE SENSING, 2019, 11 (22)
  • [23] TRANSFORMER MODELS FOR MULTI-TEMPORAL LAND COVER CLASSIFICATION USING REMOTE SENSING IMAGES
    Voelsen, M.
    Lauble, S.
    Rottensteiner, F.
    Heipke, C.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 981 - 990
  • [24] Novel Automatic Approach for Land Cover Change Detection by Using VHR Remote Sensing Images
    Lv, Zhiyong
    Wang, FengJun
    Liu, Tongfei
    Kong, XiangBin
    Benediktsson, Jon Atli
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] USING REMOTE SENSING IMAGES AND CLOUD SERVICES ON AWS TO IMPROVE LAND USE AND COVER MONITORING
    Ferreira, K. R.
    Queiroz, G. R.
    Camara, G.
    Souza, R. C. M.
    Vinhas, L.
    Marujo, R. F. B.
    Simoes, R. E. O.
    Noronha, C. A. F.
    Costa, R. W.
    Arcanjo, J. S.
    Gomes, V. C. F.
    Zaglia, M. C.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 558 - 562
  • [26] Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images
    Shankar, B. Uma
    Meher, Saroj K.
    Ghosh, Ashish
    APPLIED SOFT COMPUTING, 2011, 11 (03) : 2999 - 3011
  • [27] A deep inverse convolutional neural network-based semantic classification method for land cover remote sensing images
    Wang, Ming
    She, Anqi
    Chang, Hao
    Cheng, Feifei
    Yang, Heming
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] A Self-Learning-Update CNN Model for Semantic Segmentation of Remote Sensing Images
    Zheng, Chen
    Hu, Chen
    Chen, Yuncheng
    Li, Jingying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [29] A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery
    Stavrakoudis, D. G.
    Theocharis, J. B.
    Zalidis, G. C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (04) : 529 - 544
  • [30] Land Use and Land Cover Classification Using River Formation Dynamics Algorithm With Deep Learning on Remote Sensing Images
    Aljebreen, Mohammed
    Mengash, Hanan Abdullah
    Alamgeer, Mohammad
    Alotaibi, Saud S.
    Salama, Ahmed S.
    Hamza, Manar Ahmed
    IEEE ACCESS, 2024, 12 : 11147 - 11156