Semantic Annotation of Land Cover Remote Sensing Images Using Fuzzy CNN

被引:3
|
作者
Saranya, K. [1 ]
Bhuvaneswari, K. Selva [2 ]
机构
[1] Univ Coll Engn Kanchipuram, Dept Elect & Commun Engn, Kancheepuram 631552, India
[2] Univ Coll Engn Kanchipuram, Dept Comp Sci & Engn, Kancheepuram 631552, India
来源
关键词
Land cover; high resolution; annotation; CNN; fuzzy logic; CLASSIFICATION; RETRIEVAL; ALGORITHM;
D O I
10.32604/iasc.2022.023149
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel fuzzy logic based Convolution Neural Network intelligent classifier for accurate image classification. The proposed approach employs a semantic class label model that classifies the input land cover images into a set of semantic categories and classes depending on the content. The intelligent feature selection algorithm selects the prominent attributes from the given data set using weighted attribute functions and uses fuzzy logic to build the rules based on the membership values. To annotate remote sensing images, the CNN method effectively creates semantics and categorises images. The decision manager then integrates the fuzzy logic rules with the CNN algorithm to achieve accurate classification. The proposed approach achieves a classification accuracy of 90.46% when used with various training and test images, and the three class labels for vegetation (84%), buildings (90%), and roads (90%) provide a higher classification accuracy than other existing algorithms. On the basis of true positive rate, false positive rate, and accuracy of picture classification, the suggested approach outperforms the existing methods.
引用
收藏
页码:399 / 414
页数:16
相关论文
共 50 条
  • [11] Automatic semantic annotation by using fuzzy theory for natural images
    Cao, Jian-Fang
    Chen, Jun-Jie
    Chen, Li-Chao
    Zhao, Qing-Shan
    International Journal of Wireless and Mobile Computing, 2013, 6 (04) : 384 - 391
  • [12] Land Cover Semantic Annotation Derived from High-Resolution SAR Images
    Dumitru, Corneliu Octavian
    Schwarz, Gottfried
    Datcu, Mihai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2215 - 2232
  • [13] Land-cover classification with hyperspectral remote sensing image using CNN and spectral band selection
    Solomon, A. Arun
    Agnes, S. Akila
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [14] Using hyperspectral remote sensing for land cover classification
    Zhang, W
    Sriharan, S
    MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 : 261 - 270
  • [15] Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images
    Zhou X.
    Zhou L.
    Gong S.
    Zhang H.
    Zhong S.
    Xia Y.
    Huang Y.
    IEEE Journal on Miniaturization for Air and Space Systems, 2024, 5 (01): : 33 - 41
  • [16] TCNet: Multiscale Fusion of Transformer and CNN for Semantic Segmentation of Remote Sensing Images
    Xiang, Xuyang
    Gong, Wenping
    Li, Shuailong
    Chen, Jun
    Ren, Tianhe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3123 - 3136
  • [17] Remote sensing of land cover classes as type 2 fuzzy sets
    Fisher, Peter F.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (02) : 309 - 321
  • [18] A New Fusion Technique of Remote Sensing Images for Land Use/Cover
    WU Lian-Xi
    Pedosphere, 2004, (02) : 187 - 194
  • [19] Cost-effective land cover classification for remote sensing images
    Dongwei Li
    Shuliang Wang
    Qiang He
    Yun Yang
    Journal of Cloud Computing, 11
  • [20] Cost-effective land cover classification for remote sensing images
    Li, Dongwei
    Wang, Shuliang
    He, Qiang
    Yang, Yun
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):