Remaining Useful Life Prediction of Machinery: A New Multiscale Temporal Convolutional Network Framework

被引:28
|
作者
Deng, Feiyue [1 ]
Bi, Yan [1 ]
Liu, Yongqiang [1 ]
Yang, Shaopu [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Sch Mech Engn, Shijiazhuang 050043, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Predictive models; Convolutional neural networks; Hidden Markov models; Data models; Data mining; Deep learning (DL); multiscale dilated convolution (DCs); remaining useful life (RUL); squeeze-and-excitation (SE) unit; temporal convolutional network (TCN); SHORT-TERM-MEMORY; NEURAL-NETWORK; FAULT-DIAGNOSIS; PROGNOSTICS; HEALTH;
D O I
10.1109/TIM.2022.3200093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of deep learning (DL) techniques, data-driven models have been increasingly used in remaining useful life (RUL) prediction, in which convolution neural network (CNN)-based RUL prognostics models have received special attention. However, there are still two main issues that need to be addressed: 1) traditional CNN is not suitable to extract the time-sequence characteristics from the long-term historical signals and 2) the receptive field range of convolution operation is fixed, thus only learning the feature information at a specific scale, which is insufficient for complex feature extraction. To address these two issues, a multiscale temporal convolutional network (MsTCN) that has powerful time-sequence characteristics is proposed for RUL prediction in this article. The MsTCN adopts the temporal convolutional network (TCN) framework, which is good at extracting time-sequence information. Based on this, a new multiscale dilated causal convolution residual block (MsDCCRB) is developed to constitute the RUL prognostics model, where multiple dilated convolutions (DCs) are based on different dilation factors that are put on each layer in parallel. Furthermore, the squeeze-and-excitation (SE) unit is embedded into the MsDCCRB to adaptively recalibrate the sequence feature responses and enhance the representation learning ability. Through stacking multiple MsDCCRBs, the historical condition monitoring data can be fed directly into the proposed model to realize the high-level representations of RUL estimation. Finally, the proposed approach is validated with the accelerated whole-life degradation dataset of rolling element bearings (REBs). The experimental results exhibit that the proposed MsTCN achieves a higher RUL prediction accuracy, which is superior to some state-of-the-art data-driven prognostics methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] An attention-based multi-scale temporal convolutional network for remaining useful life prediction
    Xu, Zhiqiang
    Zhang, Yujie
    Miao, Qiang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [32] PMBCT: The Probabilistic Multiscale Bayesian Convolutional Transformer for Trustworthy Remaining Useful Life Prediction
    Peng, Huachao
    Mao, Zehui
    Jiang, Bin
    IEEE TRANSACTIONS ON RELIABILITY, 2024,
  • [33] Temporal Convolutional Network Based Regression Approach for Estimation of Remaining Useful Life
    Li, Rongze
    Chu, Zhengtian
    Jin, Wangkai
    Wang, Yaohua
    Hu, Xiao
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [34] A BiGRU method for remaining useful life prediction of machinery
    She, Daoming
    Jia, Minping
    MEASUREMENT, 2021, 167
  • [35] Multiscale Spatiotemporal Attention Network for Remaining Useful Life Prediction of Mechanical Systems
    Gao, Zhan
    Jiang, Weixiong
    Wu, Jun
    Dai, Tianjiao
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6825 - 6835
  • [36] Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery
    Shen T.
    Ding K.
    Li J.
    Huang R.
    Li W.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 183 - 194
  • [37] Temporal Knowledge Graph Informer Network for Remaining Useful Life Prediction
    Zhang, Yuanming
    Zhou, Weiyue
    Huang, Jiacheng
    Jin, Xiaohang
    Xiao, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network with Integrated Dilated Convolution Blocks
    Wang, Ran
    Shi, Ruyu
    Hu, Xiong
    Shen, Changqing
    SHOCK AND VIBRATION, 2021, 2021
  • [39] Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network with Integrated Dilated Convolution Blocks
    Wang, Ran
    Shi, Ruyu
    Hu, Xiong
    Shen, Changqing
    Shock and Vibration, 2021, 2021
  • [40] Multistep prediction of remaining useful life of proton exchange membrane fuel cell based on temporal convolutional network
    Pan, Mingzhang
    Hu, Pengfei
    Gao, Ran
    Liang, Ke
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (04) : 408 - 422