Remaining Useful Life Prediction of Machinery: A New Multiscale Temporal Convolutional Network Framework

被引:28
|
作者
Deng, Feiyue [1 ]
Bi, Yan [1 ]
Liu, Yongqiang [1 ]
Yang, Shaopu [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Sch Mech Engn, Shijiazhuang 050043, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Predictive models; Convolutional neural networks; Hidden Markov models; Data models; Data mining; Deep learning (DL); multiscale dilated convolution (DCs); remaining useful life (RUL); squeeze-and-excitation (SE) unit; temporal convolutional network (TCN); SHORT-TERM-MEMORY; NEURAL-NETWORK; FAULT-DIAGNOSIS; PROGNOSTICS; HEALTH;
D O I
10.1109/TIM.2022.3200093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of deep learning (DL) techniques, data-driven models have been increasingly used in remaining useful life (RUL) prediction, in which convolution neural network (CNN)-based RUL prognostics models have received special attention. However, there are still two main issues that need to be addressed: 1) traditional CNN is not suitable to extract the time-sequence characteristics from the long-term historical signals and 2) the receptive field range of convolution operation is fixed, thus only learning the feature information at a specific scale, which is insufficient for complex feature extraction. To address these two issues, a multiscale temporal convolutional network (MsTCN) that has powerful time-sequence characteristics is proposed for RUL prediction in this article. The MsTCN adopts the temporal convolutional network (TCN) framework, which is good at extracting time-sequence information. Based on this, a new multiscale dilated causal convolution residual block (MsDCCRB) is developed to constitute the RUL prognostics model, where multiple dilated convolutions (DCs) are based on different dilation factors that are put on each layer in parallel. Furthermore, the squeeze-and-excitation (SE) unit is embedded into the MsDCCRB to adaptively recalibrate the sequence feature responses and enhance the representation learning ability. Through stacking multiple MsDCCRBs, the historical condition monitoring data can be fed directly into the proposed model to realize the high-level representations of RUL estimation. Finally, the proposed approach is validated with the accelerated whole-life degradation dataset of rolling element bearings (REBs). The experimental results exhibit that the proposed MsTCN achieves a higher RUL prediction accuracy, which is superior to some state-of-the-art data-driven prognostics methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Temporal Convolutional Memory Networks for Remaining Useful Life Estimation of Industrial Machinery
    Jayasinghe, Lahiru
    Samarasinghe, Tharaka
    Yuen, Chau
    Low, Jenny Chen Ni
    Ge, Shuzhi Sam
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 915 - 920
  • [22] Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines
    Lin, Lin
    Wu, Jinlei
    Fu, Song
    Zhang, Sihao
    Tong, Changsheng
    Zu, Lizheng
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [23] Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network
    He, Jialong
    Wu, Chenchen
    Luo, Wei
    Qian, Chenhui
    Liu, Shaoyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [24] A global attention based gated temporal convolutional network for machine remaining useful life prediction
    Xu, Xinyao
    Zhou, Xiaolei
    Fan, Qiang
    Yan, Hao
    Wang, Fangxiao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 260
  • [25] A dual-stream temporal convolutional network for remaining useful life prediction of rolling bearings
    Zhang, Yazhou
    Zhao, Xiaoqiang
    Xu, Rongrong
    Peng, Zhenrui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [26] Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network
    Zhu, Jun
    Chen, Nan
    Peng, Weiwen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) : 3208 - 3216
  • [27] Remaining useful life prediction for rotating machinery based on dynamic graph and spatial-temporal network
    Zeng, Xiangyu
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Di
    Wei, Shangwan
    Liu, Yujie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [28] Deep Recurrent Convolutional Neural Network for Remaining Useful Life Prediction
    Ma, Meng
    Mao, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [29] Remaining Useful Life Prediction Based on Improved Temporal Convolutional Network for Nuclear Power Plant Valves
    Wang, Hang
    Peng, Minjun
    Xu, Renyi
    Ayodeji, Abiodun
    Xia, Hong
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [30] Air turbine starter remaining useful life prediction for bearing based on an improved temporal convolutional network
    Guo, Runxia
    Yang, Yini
    Huang, Chao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,