The interplay of nonlinearity and architecture in equilibrium cytoskeletal mechanics

被引:14
|
作者
Wang, Shenshen [1 ,2 ]
Shen, Tongye [3 ]
Wolynes, Peter G. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Phys, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[3] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 01期
基金
美国国家科学基金会;
关键词
GLASS-TRANSITION; ACTIN NETWORKS; LIVING CELL; STRESS; FILAMENTS; DYNAMICS; MOTILITY; BEHAVIOR; GELS;
D O I
10.1063/1.3518450
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interplay between cytoskeletal architecture and the nonlinearity of the interactions due to bucklable filaments plays a key role in modulating the cell's mechanical stability and affecting its structural rearrangements. We study a model of cytoskeletal structure treating it as an amorphous network of hard centers rigidly cross-linked by nonlinear elastic strings, neglecting the effects of motorization. Using simulations along with a self-consistent phonon method, we show that this minimal model exhibits diverse thermodynamically stable mechanical phases that depend on excluded volume, cross-link concentration, filament length, and stiffness. Within the framework set by the free energy functional formulation and making use of the random first order transition theory of structural glasses, we further estimate the characteristic densities for a kinetic glass transition to occur in this model system. Network connectivity strongly modulates the transition boundaries between various equilibrium phases, as well as the kinetic glass transition density. (c) 2011 American Institute of Physics. [doi:10.1063/1.3518450]
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MECHANICS AND NONLINEARITY OF HAIR CELL STIMULATION
    DUIFHUIS, H
    VANDEVORST, JJW
    HEARING RESEARCH, 1980, 2 (3-4) : 493 - 504
  • [32] ON NEW IDEAS OF NONLINEARITY IN QUANTUM MECHANICS
    Kovalchuk, Vasyl
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2015, : 195 - 206
  • [33] Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion
    Alvarez-Gonzalez, Begona
    Bastounis, Effie
    Meili, Ruedi
    del Alamo, Juan C.
    Firtel, Richard
    Lasheras, Juan C.
    APPLIED MECHANICS REVIEWS, 2014, 66 (05)
  • [34] Molecular control of cytoskeletal mechanics by hemodynamic forces
    Helmke, BP
    PHYSIOLOGY, 2005, 20 : 43 - 53
  • [35] PROBING CYTOSKELETAL MECHANICS USING BIOCHEMICAL INHIBITORS
    Pryse, Kenneth M.
    Abney, Teresa M.
    Genin, Guy M.
    Elson, Elliot L.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, 2010, 2010, : 357 - 358
  • [36] On the Significance of Microtubule Flexural Behavior in Cytoskeletal Mechanics
    Mehrbod, Mehrdad
    Mofrad, Mohammad R. K.
    PLOS ONE, 2011, 6 (10):
  • [37] CELLULAR MECHANICS AS AN INDICATOR OF CYTOSKELETAL STRUCTURE AND FUNCTION
    ELSON, EL
    ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1988, 17 : 397 - 430
  • [38] A microstructural approach to cytoskeletal mechanics based on tensegrity
    Stamenovic, D
    Fredberg, JJ
    Wang, N
    Butler, JP
    Ingber, DE
    JOURNAL OF THEORETICAL BIOLOGY, 1996, 181 (02) : 125 - 136
  • [39] CHAOS IN WAVE MECHANICS WITH A LOGARITHMIC NONLINEARITY
    KOSCHANY, A
    KUFFER, J
    OBERMAIR, GM
    PHYSICS LETTERS A, 1992, 167 (02) : 109 - 113
  • [40] EQUILIBRIUM STATISTICAL MECHANICS
    PEARSON, FJ
    NATURE, 1965, 207 (4997) : 565 - +