The interplay of nonlinearity and architecture in equilibrium cytoskeletal mechanics

被引:14
|
作者
Wang, Shenshen [1 ,2 ]
Shen, Tongye [3 ]
Wolynes, Peter G. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Phys, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[3] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 01期
基金
美国国家科学基金会;
关键词
GLASS-TRANSITION; ACTIN NETWORKS; LIVING CELL; STRESS; FILAMENTS; DYNAMICS; MOTILITY; BEHAVIOR; GELS;
D O I
10.1063/1.3518450
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interplay between cytoskeletal architecture and the nonlinearity of the interactions due to bucklable filaments plays a key role in modulating the cell's mechanical stability and affecting its structural rearrangements. We study a model of cytoskeletal structure treating it as an amorphous network of hard centers rigidly cross-linked by nonlinear elastic strings, neglecting the effects of motorization. Using simulations along with a self-consistent phonon method, we show that this minimal model exhibits diverse thermodynamically stable mechanical phases that depend on excluded volume, cross-link concentration, filament length, and stiffness. Within the framework set by the free energy functional formulation and making use of the random first order transition theory of structural glasses, we further estimate the characteristic densities for a kinetic glass transition to occur in this model system. Network connectivity strongly modulates the transition boundaries between various equilibrium phases, as well as the kinetic glass transition density. (c) 2011 American Institute of Physics. [doi:10.1063/1.3518450]
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Cytoskeletal mechanics of platelet formation.
    Italiano, JE
    Shivdasani, RA
    Hartwig, JH
    BLOOD, 2002, 100 (11) : 132A - 132A
  • [22] Mechanics and dynamics of reconstituted cytoskeletal systems
    Jensen, Mikkel H.
    Morris, Eliza J.
    Weitz, David A.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2015, 1853 (11): : 3038 - 3042
  • [23] On the Interplay of Organizational Architecture and Software Architecture
    Ganczarski, Wojciech
    Winter, Robert
    ENTERPRISE MODELLING AND INFORMATION SYSTEMS ARCHITECTURES-AN INTERNATIONAL JOURNAL, 2008, 3 (01): : 24 - 35
  • [24] Cytoskeletal mechanics of proplatelet maturation and platelet release
    Thon, Jonathan N.
    Montalvo, Alejandro
    Patel-Hett, Sunita
    Devine, Matthew T.
    Richardson, Jennifer L.
    Ehrlicher, Allen
    Larson, Mark K.
    Hoffmeister, Karin
    Hartwig, John H.
    Italiano, Joseph E., Jr.
    JOURNAL OF CELL BIOLOGY, 2010, 191 (04): : 861 - 874
  • [25] New wrinkles: Cytoskeletal mechanics of endoderm invagination
    Sherrard, KM
    Munro, EE
    Beckham, Y
    Odell, GM
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2004, 44 (06) : 746 - 746
  • [26] Driving cytoskeletal remodeling by extracellular matrix mechanics
    Byfield, Fitzroy J.
    Wen, Qi
    Tee, Shang-You
    Janmey, Paul A.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 160 - 160
  • [27] QUANTUM-MECHANICS - NO NEED FOR NONLINEARITY
    THOMPSON, R
    NATURE, 1990, 346 (6279) : 13 - 14
  • [28] Invited review: Engineering approaches to cytoskeletal mechanics
    Stamenovic, D
    Wang, N
    JOURNAL OF APPLIED PHYSIOLOGY, 2000, 89 (05) : 2085 - 2090
  • [29] Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo
    Lv, Zhiyi
    De-Carvalho, Jorge
    Telley, Ivo A.
    Grosshans, Joerg
    JOURNAL OF CELL SCIENCE, 2021, 134 (04)
  • [30] Cytoskeletal mechanics in airway smooth muscle cells
    Stamenovic, Dimitrije
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2008, 163 (1-3) : 25 - 32