Forecasting residential electricity consumption using a hybrid machine learning model with online search data

被引:31
|
作者
Gao, Feng [1 ,2 ,3 ]
Chi, Hong [1 ,2 ,3 ]
Shao, Xueyan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Dev, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
Residential electricity consumption forecasting; Online search data; Extreme learning machine; Jaya; SUPPORT VECTOR REGRESSION; FLY OPTIMIZATION ALGORITHM; ENERGY-CONSUMPTION; DEMAND; DECOMPOSITION; TEMPERATURE;
D O I
10.1016/j.apenergy.2021.117393
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate forecasting of residential electricity consumption plays an important role in formulating energy plans and ensuring the safety of power system operations. In order to improve forecasting accuracy, we propose a novel hybrid model with online search data for residential electricity consumption forecasting. Two main steps are involved: (1) Time difference correlation analysis, cointegration test, and Granger causality test are employed to investigate the relationship between online search data and residential electricity consumption. Qualified search keywords are selected to serve as predictors. (2) An extreme learning machine model optimized by Jaya algorithm, together with the selected search keywords from the first step, is proposed to predict residential electricity consumption. Furthermore, monthly residential electricity consumption data from China are used to validate the effectiveness of the proposed model. The experimental results show that the incorporation of online search data into the model can significantly improve forecasting accuracy. After incorporating online search data, improvement rates of all the forecasting models exceed 10%. In addition, the proposed model has the best forecasting performance compared with seasonal autoregressive integrated moving average (SARIMA(X)), support vector regression (SVR), back propagation neural network (BPNN) and extreme learning model (ELM). Root mean squared error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) of the proposed model with online search data decrease by 34%-51.2%, 43.03%-53.92%, and 41.35%-54.85% relative to other benchmark models, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Forecasting Time Series for Electricity Consumption Data Using Dynamic Weight Ensemble Model
    Hu, Cheng-Hsiang
    Chen, Yi-Ling
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Sustainable EnergySense: a predictive machine learning framework for optimizing residential electricity consumption
    Murad Al-Rajab
    Samia Loucif
    Discover Sustainability, 5
  • [43] Sustainable EnergySense: a predictive machine learning framework for optimizing residential electricity consumption
    Al-Rajab, Murad
    Loucif, Samia
    DISCOVER SUSTAINABILITY, 2024, 5 (01):
  • [44] Forecasting United Kingdom's energy consumption using machine learning and hybrid approaches
    Bala, Dahiru A.
    Shuaibu, Mohammed
    ENERGY & ENVIRONMENT, 2024, 35 (03) : 1493 - 1531
  • [45] Short-term Electricity Price Forecasting Using Interpretable Hybrid Machine Learning Models
    Mubarak, Hamza
    Ahmad, Shameem
    Hossain, Al Amin
    Horan, Ben
    Abdellatif, Abdallah
    Mekhilef, Saad
    Seyedmahmoudian, Mehdi
    Stojcevski, Alex
    Mokhlis, Hazlie
    Kanesan, Jeevan
    Becherif, Mohamed
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [46] A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption
    Xiong, Xin
    Hu, Xi
    Guo, Huan
    ENERGY, 2021, 234
  • [47] Machine learning based switching model for electricity load forecasting
    Fan, Shu
    Chen, Luonan
    Lee, Wei-Jen
    ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) : 1331 - 1344
  • [48] Residential energy consumption forecasting using deep learning models
    Ramos, Paulo Vitor B.
    Villela, Saulo Moraes
    Silva, Walquiria N.
    Dias, Bruno H.
    APPLIED ENERGY, 2023, 350
  • [49] Forecasting electricity consumption of OECD countries: A global machine learning modeling approach
    Sen, Doruk
    Tunc, K. M. Murat
    Gunay, M. Erdem
    UTILITIES POLICY, 2021, 70
  • [50] T-LGBKS: An Interpretable Machine Learning Framework for Electricity Consumption Forecasting
    Liang, Mengkun
    Guo, Renjing
    Li, Hongyu
    Wu, Jiaqi
    Sun, Xiangdong
    ENERGIES, 2023, 16 (11)