Forecasting residential electricity consumption using a hybrid machine learning model with online search data

被引:31
|
作者
Gao, Feng [1 ,2 ,3 ]
Chi, Hong [1 ,2 ,3 ]
Shao, Xueyan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Dev, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
Residential electricity consumption forecasting; Online search data; Extreme learning machine; Jaya; SUPPORT VECTOR REGRESSION; FLY OPTIMIZATION ALGORITHM; ENERGY-CONSUMPTION; DEMAND; DECOMPOSITION; TEMPERATURE;
D O I
10.1016/j.apenergy.2021.117393
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate forecasting of residential electricity consumption plays an important role in formulating energy plans and ensuring the safety of power system operations. In order to improve forecasting accuracy, we propose a novel hybrid model with online search data for residential electricity consumption forecasting. Two main steps are involved: (1) Time difference correlation analysis, cointegration test, and Granger causality test are employed to investigate the relationship between online search data and residential electricity consumption. Qualified search keywords are selected to serve as predictors. (2) An extreme learning machine model optimized by Jaya algorithm, together with the selected search keywords from the first step, is proposed to predict residential electricity consumption. Furthermore, monthly residential electricity consumption data from China are used to validate the effectiveness of the proposed model. The experimental results show that the incorporation of online search data into the model can significantly improve forecasting accuracy. After incorporating online search data, improvement rates of all the forecasting models exceed 10%. In addition, the proposed model has the best forecasting performance compared with seasonal autoregressive integrated moving average (SARIMA(X)), support vector regression (SVR), back propagation neural network (BPNN) and extreme learning model (ELM). Root mean squared error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) of the proposed model with online search data decrease by 34%-51.2%, 43.03%-53.92%, and 41.35%-54.85% relative to other benchmark models, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine Learning Approach Electric Appliance Consumption and Peak Demand Forecasting of Residential Customers Using Smart Meter Data
    Abera, Fikirte Zemene
    Khedkar, Vijayshri
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 111 (01) : 65 - 82
  • [32] Electricity Price Forecasting for Cloud Computing Using an Enhanced Machine Learning Model
    Albahli, Saleh
    Shiraz, Muhammad
    Ayub, Nasir
    IEEE ACCESS, 2020, 8 : 200971 - 200981
  • [33] A Novel Fuzzy Based Human Behavior Model for Residential Electricity Consumption Forecasting
    Alrizq, Mesfer
    de Doncker, Elise
    2018 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2018,
  • [34] Day ahead electricity consumption forecasting with MOGUL learning model
    Jozi, Aria
    Pinto, Tiago
    Praca, Isabel
    Vale, Zita
    Soares, Joao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [35] Forecasting Medical Device Demand with Online Search Queries: A Big Data and Machine Learning Approach
    Xu, Shuojiang
    Chan, Hing Kai
    25TH INTERNATIONAL CONFERENCE ON PRODUCTION RESEARCH MANUFACTURING INNOVATION: CYBER PHYSICAL MANUFACTURING, 2019, 39 : 32 - 39
  • [36] National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?
    Lee, Juyong
    Cho, Youngsang
    ENERGY, 2022, 239
  • [37] An Intelligent Hybrid Machine Learning Model for Sustainable Forecasting of Home Energy Demand and Electricity Price
    Parizad, Banafshe
    Ranjbarzadeh, Hassan
    Jamali, Ali
    Khayyam, Hamid
    SUSTAINABILITY, 2024, 16 (06)
  • [38] Development of an Efficient Electricity Consumption Prediction Model using Machine Learning Techniques
    Alraddadi, Ghaidaa Hamad
    Ben Othman, Mohamed Tahar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 376 - 384
  • [39] Energy Forecasting Using an Ensamble of Machine Learning Methods Trained Only with Electricity Data
    Luis, Goncalo
    Esteves, Joao
    da Silva, Nuno Pinho
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 449 - 453
  • [40] Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model
    Di Nunno, Fabio
    Granata, Francesco
    Pham, Quoc Bao
    de Marinis, Giovanni
    SUSTAINABILITY, 2022, 14 (05)